建筑冷热负荷预测的人工神经网络模型

N. Nwulu
{"title":"建筑冷热负荷预测的人工神经网络模型","authors":"N. Nwulu","doi":"10.1109/IDAP.2017.8090314","DOIUrl":null,"url":null,"abstract":"In this work, an artificial neural network is designed for predicting the heating and cooling loads for buildings. The paper develops two neural models that make use of a dataset with 8 input attributes with the output as a numeric value of the heating and cooling loads of the buildings. The predictive abilities of the neural nets are compared with linear regression under conventional validation, 5-fold validation and 10-fold validation. Obtained results show that both neural models obtain encouraging results and can be dependably deployed in building loads determination.","PeriodicalId":111721,"journal":{"name":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"An artificial neural network model for predicting building heating and cooling loads\",\"authors\":\"N. Nwulu\",\"doi\":\"10.1109/IDAP.2017.8090314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an artificial neural network is designed for predicting the heating and cooling loads for buildings. The paper develops two neural models that make use of a dataset with 8 input attributes with the output as a numeric value of the heating and cooling loads of the buildings. The predictive abilities of the neural nets are compared with linear regression under conventional validation, 5-fold validation and 10-fold validation. Obtained results show that both neural models obtain encouraging results and can be dependably deployed in building loads determination.\",\"PeriodicalId\":111721,\"journal\":{\"name\":\"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAP.2017.8090314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAP.2017.8090314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文设计了一种人工神经网络来预测建筑物的冷热负荷。本文开发了两个神经模型,利用具有8个输入属性的数据集,将输出作为建筑物冷热负荷的数值。在常规验证、5倍验证和10倍验证下,比较了神经网络与线性回归的预测能力。结果表明,两种神经网络模型均取得了令人满意的结果,可可靠地应用于建筑物荷载的确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An artificial neural network model for predicting building heating and cooling loads
In this work, an artificial neural network is designed for predicting the heating and cooling loads for buildings. The paper develops two neural models that make use of a dataset with 8 input attributes with the output as a numeric value of the heating and cooling loads of the buildings. The predictive abilities of the neural nets are compared with linear regression under conventional validation, 5-fold validation and 10-fold validation. Obtained results show that both neural models obtain encouraging results and can be dependably deployed in building loads determination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信