四旋翼模型的参数估计

M. Kakanov, S. Tomashevich, V. Gromov, O. Borisov, F. B. Gromova, A. Pyrkin
{"title":"四旋翼模型的参数估计","authors":"M. Kakanov, S. Tomashevich, V. Gromov, O. Borisov, F. B. Gromova, A. Pyrkin","doi":"10.1109/NIR50484.2020.9290199","DOIUrl":null,"url":null,"abstract":"This article is devoted to the estimation of unknown parameters of the quadrotor dynamic model. The linear regression model of the quadrotor was obtained. To estimate the unknown parameters of the regression model, the gradient approach and its modifications, such as the advanced Kalman filter, and dynamic regressor extension and mixing (DREM) methods were applied. The effectiveness of the proposed methods was confirmed by simulation. The results showed the benefits of the DREM algorithm, in particular, concerning the convergence rate.","PeriodicalId":274976,"journal":{"name":"2020 International Conference Nonlinearity, Information and Robotics (NIR)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parameter Estimation of Quadrotor Model\",\"authors\":\"M. Kakanov, S. Tomashevich, V. Gromov, O. Borisov, F. B. Gromova, A. Pyrkin\",\"doi\":\"10.1109/NIR50484.2020.9290199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is devoted to the estimation of unknown parameters of the quadrotor dynamic model. The linear regression model of the quadrotor was obtained. To estimate the unknown parameters of the regression model, the gradient approach and its modifications, such as the advanced Kalman filter, and dynamic regressor extension and mixing (DREM) methods were applied. The effectiveness of the proposed methods was confirmed by simulation. The results showed the benefits of the DREM algorithm, in particular, concerning the convergence rate.\",\"PeriodicalId\":274976,\"journal\":{\"name\":\"2020 International Conference Nonlinearity, Information and Robotics (NIR)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference Nonlinearity, Information and Robotics (NIR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NIR50484.2020.9290199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference Nonlinearity, Information and Robotics (NIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NIR50484.2020.9290199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文主要研究四旋翼飞行器动力学模型的未知参数估计问题。建立了四旋翼飞行器的线性回归模型。为了估计回归模型的未知参数,采用了梯度法及其改进,如先进的卡尔曼滤波和动态回归扩展与混合(DREM)方法。通过仿真验证了所提方法的有效性。结果表明了DREM算法的优点,特别是在收敛速度方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Estimation of Quadrotor Model
This article is devoted to the estimation of unknown parameters of the quadrotor dynamic model. The linear regression model of the quadrotor was obtained. To estimate the unknown parameters of the regression model, the gradient approach and its modifications, such as the advanced Kalman filter, and dynamic regressor extension and mixing (DREM) methods were applied. The effectiveness of the proposed methods was confirmed by simulation. The results showed the benefits of the DREM algorithm, in particular, concerning the convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信