基于模型识别的大豆叶片氮元素信息预处理

Li-shu Wang
{"title":"基于模型识别的大豆叶片氮元素信息预处理","authors":"Li-shu Wang","doi":"10.1109/ICACTE.2010.5579376","DOIUrl":null,"url":null,"abstract":"This paper research the use of computer visual and image information collected preprocessing based on pattern recognition of soybean Nitrogen element detect. When Nitrogen elements of the soybean plant changes, color and texture will be characteristic. By nurturing and collecting samples, This work analyzed the characteristics determine preprocessing, established a preprocessing system model. The work will be a preliminary diagnosis of soybean nitrogen deficiency, and the basis for further model identification.","PeriodicalId":255806,"journal":{"name":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Soybean leaves nitrogen elements information collected preprocessing based on model identification\",\"authors\":\"Li-shu Wang\",\"doi\":\"10.1109/ICACTE.2010.5579376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper research the use of computer visual and image information collected preprocessing based on pattern recognition of soybean Nitrogen element detect. When Nitrogen elements of the soybean plant changes, color and texture will be characteristic. By nurturing and collecting samples, This work analyzed the characteristics determine preprocessing, established a preprocessing system model. The work will be a preliminary diagnosis of soybean nitrogen deficiency, and the basis for further model identification.\",\"PeriodicalId\":255806,\"journal\":{\"name\":\"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACTE.2010.5579376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTE.2010.5579376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究利用计算机视觉和采集的图像信息进行基于模式识别的大豆氮元素检测。当大豆植株的氮元素发生变化时,其颜色和质地也会发生变化。通过培养和采集样品,分析确定预处理的特点,建立预处理系统模型。本研究将为大豆氮素缺乏症的初步诊断,并为进一步的模型鉴定奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soybean leaves nitrogen elements information collected preprocessing based on model identification
This paper research the use of computer visual and image information collected preprocessing based on pattern recognition of soybean Nitrogen element detect. When Nitrogen elements of the soybean plant changes, color and texture will be characteristic. By nurturing and collecting samples, This work analyzed the characteristics determine preprocessing, established a preprocessing system model. The work will be a preliminary diagnosis of soybean nitrogen deficiency, and the basis for further model identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信