生日问题:具有多个离散假设的贝叶斯推理

T. Donovan, R. Mickey
{"title":"生日问题:具有多个离散假设的贝叶斯推理","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0006","DOIUrl":null,"url":null,"abstract":"The “Birthday Problem” expands consideration from two hypotheses to multiple, discrete hypotheses. In this chapter, interest is in determining the posterior probability that a woman named Mary was born in a given month; there are twelve alternative hypotheses. Furthermore, consideration is given to assigning prior probabilities. The priors represent a priori probabilities that each alternative hypothesis is correct, where a priori means “prior to data collection,” and can be “informative” or “non-informative.” A Bayesian analysis cannot be conducted without using a prior distribution, whether that is an informative prior distribution or a non-informative prior distribution. The chapter discusses objective priors, subjective priors, and prior sensitivity analysis. In addition, the concept of likelihood is explored more deeply.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Birthday Problem: Bayesian Inference with Multiple Discrete Hypotheses\",\"authors\":\"T. Donovan, R. Mickey\",\"doi\":\"10.1093/OSO/9780198841296.003.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The “Birthday Problem” expands consideration from two hypotheses to multiple, discrete hypotheses. In this chapter, interest is in determining the posterior probability that a woman named Mary was born in a given month; there are twelve alternative hypotheses. Furthermore, consideration is given to assigning prior probabilities. The priors represent a priori probabilities that each alternative hypothesis is correct, where a priori means “prior to data collection,” and can be “informative” or “non-informative.” A Bayesian analysis cannot be conducted without using a prior distribution, whether that is an informative prior distribution or a non-informative prior distribution. The chapter discusses objective priors, subjective priors, and prior sensitivity analysis. In addition, the concept of likelihood is explored more deeply.\",\"PeriodicalId\":285230,\"journal\":{\"name\":\"Bayesian Statistics for Beginners\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Statistics for Beginners\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/OSO/9780198841296.003.0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

“生日问题”将考虑范围从两个假设扩展到多个离散的假设。在本章中,我们感兴趣的是确定一个名叫玛丽的女人在给定月份出生的后验概率;有十二个可供选择的假设。此外,还考虑了分配先验概率。先验表示每个备选假设是正确的先验概率,其中先验表示“在数据收集之前”,可以是“有信息的”或“无信息的”。无论先验分布是信息先验分布还是非信息先验分布,贝叶斯分析都离不开先验分布。本章讨论了客观先验、主观先验和先验敏感性分析。此外,对似然的概念进行了更深入的探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Birthday Problem: Bayesian Inference with Multiple Discrete Hypotheses
The “Birthday Problem” expands consideration from two hypotheses to multiple, discrete hypotheses. In this chapter, interest is in determining the posterior probability that a woman named Mary was born in a given month; there are twelve alternative hypotheses. Furthermore, consideration is given to assigning prior probabilities. The priors represent a priori probabilities that each alternative hypothesis is correct, where a priori means “prior to data collection,” and can be “informative” or “non-informative.” A Bayesian analysis cannot be conducted without using a prior distribution, whether that is an informative prior distribution or a non-informative prior distribution. The chapter discusses objective priors, subjective priors, and prior sensitivity analysis. In addition, the concept of likelihood is explored more deeply.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信