使用12导联心电图的心内电成像:一种使用合成数据的机器学习方法

Mikel Landajuela, R. Anirudh, Joe Loscazo, R. Blake
{"title":"使用12导联心电图的心内电成像:一种使用合成数据的机器学习方法","authors":"Mikel Landajuela, R. Anirudh, Joe Loscazo, R. Blake","doi":"10.22489/CinC.2022.026","DOIUrl":null,"url":null,"abstract":"Current state-of-the-art techniques for non-invasive imaging of cardiac electrical phenomena require voltage recordings from dozens of different torso locations and anatomical models built from expensive medical diagnostic imaging procedures. This study aimed to assess if recent machine learning advances could alternatively reconstruct electroanatomical maps at clinically relevant resolutions using only the standard 12-lead electrocardiogram (ECG) as input. To that end, a computational study was conducted to generate a dataset of over 16000 detailed cardiac simulations, which was then used to train neural network (NN) architectures designed to exploit both spatial and temporal correlations in the ECG signal. Analysis over a validation set showed average errors in activation map reconstruction below 1.7 msec over 75 intracardiac locations. Furthermore, phenotypical patterns of activation and the morphology of the activation potential were correctly reconstructed. The approach offers opportunities to stratify patients non-invasively, both retrospectively and prospectively, using metrics otherwise only available through invasive clinical procedures.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intracardiac Electrical Imaging Using the 12-Lead ECG: A Machine Learning Approach Using Synthetic Data\",\"authors\":\"Mikel Landajuela, R. Anirudh, Joe Loscazo, R. Blake\",\"doi\":\"10.22489/CinC.2022.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current state-of-the-art techniques for non-invasive imaging of cardiac electrical phenomena require voltage recordings from dozens of different torso locations and anatomical models built from expensive medical diagnostic imaging procedures. This study aimed to assess if recent machine learning advances could alternatively reconstruct electroanatomical maps at clinically relevant resolutions using only the standard 12-lead electrocardiogram (ECG) as input. To that end, a computational study was conducted to generate a dataset of over 16000 detailed cardiac simulations, which was then used to train neural network (NN) architectures designed to exploit both spatial and temporal correlations in the ECG signal. Analysis over a validation set showed average errors in activation map reconstruction below 1.7 msec over 75 intracardiac locations. Furthermore, phenotypical patterns of activation and the morphology of the activation potential were correctly reconstructed. The approach offers opportunities to stratify patients non-invasively, both retrospectively and prospectively, using metrics otherwise only available through invasive clinical procedures.\",\"PeriodicalId\":117840,\"journal\":{\"name\":\"2022 Computing in Cardiology (CinC)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2022.026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前最先进的无创心脏电现象成像技术需要从数十个不同的躯干位置记录电压,并通过昂贵的医学诊断成像程序建立解剖模型。本研究旨在评估最近的机器学习进展是否可以仅使用标准12导联心电图(ECG)作为输入,以临床相关分辨率重建电解剖图。为此,进行了一项计算研究,以生成超过16000个详细的心脏模拟数据集,然后将其用于训练旨在利用心电信号中的空间和时间相关性的神经网络(NN)架构。对验证集的分析显示,在75个心内位置上,激活图重建的平均误差低于1.7毫秒。此外,激活的表型模式和激活电位的形态被正确地重建。该方法提供了对患者进行回顾性和前瞻性非侵入性分层的机会,使用的指标只能通过侵入性临床程序获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intracardiac Electrical Imaging Using the 12-Lead ECG: A Machine Learning Approach Using Synthetic Data
Current state-of-the-art techniques for non-invasive imaging of cardiac electrical phenomena require voltage recordings from dozens of different torso locations and anatomical models built from expensive medical diagnostic imaging procedures. This study aimed to assess if recent machine learning advances could alternatively reconstruct electroanatomical maps at clinically relevant resolutions using only the standard 12-lead electrocardiogram (ECG) as input. To that end, a computational study was conducted to generate a dataset of over 16000 detailed cardiac simulations, which was then used to train neural network (NN) architectures designed to exploit both spatial and temporal correlations in the ECG signal. Analysis over a validation set showed average errors in activation map reconstruction below 1.7 msec over 75 intracardiac locations. Furthermore, phenotypical patterns of activation and the morphology of the activation potential were correctly reconstructed. The approach offers opportunities to stratify patients non-invasively, both retrospectively and prospectively, using metrics otherwise only available through invasive clinical procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信