具有自适应突变率的标记遗传算法

P. Hartono, S. Hashimoto, M. Wahde
{"title":"具有自适应突变率的标记遗传算法","authors":"P. Hartono, S. Hashimoto, M. Wahde","doi":"10.1109/CEC.2004.1331121","DOIUrl":null,"url":null,"abstract":"In This work we propose a modified GA that assigns a unique mutation rate to each gene based on the contribution of the respective gene's contribution to the fitness of the individual. Although the proposed model is not \"parameter free\", through a number of experiments, we show that the parameters for this model are significantly insensitive to the landscape of the problems compared with the mutation rate in conventional GA, implying that this model could deal effectively with a wide range of problems the requirement to set the mutation rate empirically.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Labeled-GA with adaptive mutation rate\",\"authors\":\"P. Hartono, S. Hashimoto, M. Wahde\",\"doi\":\"10.1109/CEC.2004.1331121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In This work we propose a modified GA that assigns a unique mutation rate to each gene based on the contribution of the respective gene's contribution to the fitness of the individual. Although the proposed model is not \\\"parameter free\\\", through a number of experiments, we show that the parameters for this model are significantly insensitive to the landscape of the problems compared with the mutation rate in conventional GA, implying that this model could deal effectively with a wide range of problems the requirement to set the mutation rate empirically.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1331121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这项工作中,我们提出了一种改进的遗传算法,根据每个基因对个体适应度的贡献,为每个基因分配一个独特的突变率。虽然所提出的模型不是“无参数”的,但通过大量的实验,我们表明,与传统遗传算法的突变率相比,该模型的参数对问题的情况明显不敏感,这意味着该模型可以有效地处理需要经验设置突变率的广泛问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Labeled-GA with adaptive mutation rate
In This work we propose a modified GA that assigns a unique mutation rate to each gene based on the contribution of the respective gene's contribution to the fitness of the individual. Although the proposed model is not "parameter free", through a number of experiments, we show that the parameters for this model are significantly insensitive to the landscape of the problems compared with the mutation rate in conventional GA, implying that this model could deal effectively with a wide range of problems the requirement to set the mutation rate empirically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信