后向散射图像纹理的监督分割

P. Paclík, R. Duin, Geert M. P. van Kempen, R. Kohlus
{"title":"后向散射图像纹理的监督分割","authors":"P. Paclík, R. Duin, Geert M. P. van Kempen, R. Kohlus","doi":"10.1109/ICPR.2002.1048345","DOIUrl":null,"url":null,"abstract":"In this paper we present an application of statistical pattern recognition for segmentation of backscatter images (BSE) in product analysis of laundry detergents. Currently, application experts segment BSE images interactively which is both time consuming and expert dependent. We present a new, automatic procedure for supervised BSE segmentation which is trained using additional multi-spectral EDX images. Each time a new feature selection procedure is employed to find a convenient feature subset for a particular segmentation problem. The performance of the presented algorithm is evaluated using ground-truth segmentation results. It is compared with that of interactive segmentation performed by the analyst.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Supervised segmentation of textures in backscatter images\",\"authors\":\"P. Paclík, R. Duin, Geert M. P. van Kempen, R. Kohlus\",\"doi\":\"10.1109/ICPR.2002.1048345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an application of statistical pattern recognition for segmentation of backscatter images (BSE) in product analysis of laundry detergents. Currently, application experts segment BSE images interactively which is both time consuming and expert dependent. We present a new, automatic procedure for supervised BSE segmentation which is trained using additional multi-spectral EDX images. Each time a new feature selection procedure is employed to find a convenient feature subset for a particular segmentation problem. The performance of the presented algorithm is evaluated using ground-truth segmentation results. It is compared with that of interactive segmentation performed by the analyst.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文提出了一种基于统计模式识别的后向散射图像分割(BSE)在洗衣粉产品分析中的应用。目前,应用专家对疯牛病图像进行交互式分割既耗时又依赖于专家。我们提出了一种新的自动过程,用于监督BSE分割,该过程使用额外的多光谱EDX图像进行训练。每次都使用一个新的特征选择过程来为特定的分割问题找到一个方便的特征子集。利用真值分割结果对该算法的性能进行了评价。将其与分析人员进行的交互式分割进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised segmentation of textures in backscatter images
In this paper we present an application of statistical pattern recognition for segmentation of backscatter images (BSE) in product analysis of laundry detergents. Currently, application experts segment BSE images interactively which is both time consuming and expert dependent. We present a new, automatic procedure for supervised BSE segmentation which is trained using additional multi-spectral EDX images. Each time a new feature selection procedure is employed to find a convenient feature subset for a particular segmentation problem. The performance of the presented algorithm is evaluated using ground-truth segmentation results. It is compared with that of interactive segmentation performed by the analyst.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信