Python中使用编译的高效查询处理

Hesam Shahrokhi, Callum Groeger, Yizhuo Yang, A. Shaikhha
{"title":"Python中使用编译的高效查询处理","authors":"Hesam Shahrokhi, Callum Groeger, Yizhuo Yang, A. Shaikhha","doi":"10.1145/3555041.3589735","DOIUrl":null,"url":null,"abstract":"In this paper, we present a framework for efficient query processing in Python. Inspired by the increasing interest in Python-based frameworks such as TensorFlow and Pandas for data scientists, our framework consists of three different input languages. The first language is SQL; to better integrate the SQL queries with the rest of the data science pipeline, by relying on off-the-shelf query optimizers (e.g., PostgreSQL) the SQL code is translated to a physical query plan, which is in turn translated to Pandas code. The second input is Pandas code; it can be either run by Pandas itself or alternatively be translated into SDQL.py, the third input language that can be translated into efficient low-level code and can achieve an order-of-magnitude performance improvement over Pandas. Our framework exposes a Python-based API that allows data scientists to use SDQL.py as a pure Python library.","PeriodicalId":161812,"journal":{"name":"Companion of the 2023 International Conference on Management of Data","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Query Processing in Python Using Compilation\",\"authors\":\"Hesam Shahrokhi, Callum Groeger, Yizhuo Yang, A. Shaikhha\",\"doi\":\"10.1145/3555041.3589735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a framework for efficient query processing in Python. Inspired by the increasing interest in Python-based frameworks such as TensorFlow and Pandas for data scientists, our framework consists of three different input languages. The first language is SQL; to better integrate the SQL queries with the rest of the data science pipeline, by relying on off-the-shelf query optimizers (e.g., PostgreSQL) the SQL code is translated to a physical query plan, which is in turn translated to Pandas code. The second input is Pandas code; it can be either run by Pandas itself or alternatively be translated into SDQL.py, the third input language that can be translated into efficient low-level code and can achieve an order-of-magnitude performance improvement over Pandas. Our framework exposes a Python-based API that allows data scientists to use SDQL.py as a pure Python library.\",\"PeriodicalId\":161812,\"journal\":{\"name\":\"Companion of the 2023 International Conference on Management of Data\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2023 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555041.3589735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2023 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555041.3589735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个在Python中高效处理查询的框架。受数据科学家对基于python的框架(如TensorFlow和Pandas)越来越感兴趣的启发,我们的框架由三种不同的输入语言组成。第一种语言是SQL;为了更好地将SQL查询与数据科学管道的其余部分集成,通过依赖现成的查询优化器(例如,PostgreSQL), SQL代码被转换为物理查询计划,而物理查询计划又被转换为Pandas代码。第二个输入是Pandas代码;它既可以由Pandas自己运行,也可以被翻译成SDQL.py,这是第三种输入语言,可以被翻译成高效的低级代码,并且可以实现比Pandas数量级的性能改进。我们的框架公开了一个基于Python的API,允许数据科学家使用SDQL.py作为一个纯Python库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Query Processing in Python Using Compilation
In this paper, we present a framework for efficient query processing in Python. Inspired by the increasing interest in Python-based frameworks such as TensorFlow and Pandas for data scientists, our framework consists of three different input languages. The first language is SQL; to better integrate the SQL queries with the rest of the data science pipeline, by relying on off-the-shelf query optimizers (e.g., PostgreSQL) the SQL code is translated to a physical query plan, which is in turn translated to Pandas code. The second input is Pandas code; it can be either run by Pandas itself or alternatively be translated into SDQL.py, the third input language that can be translated into efficient low-level code and can achieve an order-of-magnitude performance improvement over Pandas. Our framework exposes a Python-based API that allows data scientists to use SDQL.py as a pure Python library.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信