变工况下的无监督故障检测

Gabriel Michau, Olga Fink
{"title":"变工况下的无监督故障检测","authors":"Gabriel Michau, Olga Fink","doi":"10.1109/ICPHM.2019.8819383","DOIUrl":null,"url":null,"abstract":"Training data-driven approaches for complex industrial system health monitoring is challenging. When data on faulty conditions are rare or not available, the training has to be performed in a unsupervised manner. In addition, when the observation period, used for training, is kept short, to be able to monitor the system in its early life, the training data might not be representative of all the system normal operating conditions. In this paper, we propose five approaches to perform fault detection in such context. Two approaches rely on the data from the unit to be monitored only: the baseline is trained on the early life of the unit. An incremental learning procedure tries to learn new operating conditions as they arise. Three other approaches take advantage of data from other similar units within a fleet. In two cases, units are directly compared to each other with similarity measures, and the data from similar units are combined in the training set. We propose, in the third case, a new deep-learning methodology to perform, first, a feature alignment of different units with an Unsupervised Feature Alignment Network (UFAN). Then, features of both units are combined in the training set of the fault detection neural network.The approaches are tested on a fleet comprising 112 units, observed over one year of data. All approaches proposed here are an improvement to the baseline, trained with two months of data only. As units in the fleet are found to be very dissimilar, the new architecture UFAN, that aligns units in the feature space, is outperforming others.","PeriodicalId":113460,"journal":{"name":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Unsupervised Fault Detection in Varying Operating Conditions\",\"authors\":\"Gabriel Michau, Olga Fink\",\"doi\":\"10.1109/ICPHM.2019.8819383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Training data-driven approaches for complex industrial system health monitoring is challenging. When data on faulty conditions are rare or not available, the training has to be performed in a unsupervised manner. In addition, when the observation period, used for training, is kept short, to be able to monitor the system in its early life, the training data might not be representative of all the system normal operating conditions. In this paper, we propose five approaches to perform fault detection in such context. Two approaches rely on the data from the unit to be monitored only: the baseline is trained on the early life of the unit. An incremental learning procedure tries to learn new operating conditions as they arise. Three other approaches take advantage of data from other similar units within a fleet. In two cases, units are directly compared to each other with similarity measures, and the data from similar units are combined in the training set. We propose, in the third case, a new deep-learning methodology to perform, first, a feature alignment of different units with an Unsupervised Feature Alignment Network (UFAN). Then, features of both units are combined in the training set of the fault detection neural network.The approaches are tested on a fleet comprising 112 units, observed over one year of data. All approaches proposed here are an improvement to the baseline, trained with two months of data only. As units in the fleet are found to be very dissimilar, the new architecture UFAN, that aligns units in the feature space, is outperforming others.\",\"PeriodicalId\":113460,\"journal\":{\"name\":\"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2019.8819383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2019.8819383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

训练用于复杂工业系统健康监测的数据驱动方法具有挑战性。当故障条件下的数据很少或不可用时,训练必须以无监督的方式进行。此外,当用于训练的观察期保持较短,以便能够监测系统的早期运行状态时,训练数据可能无法代表系统的所有正常运行状态。在本文中,我们提出了在这种情况下进行故障检测的五种方法。有两种方法仅依赖于待监测单元的数据:基线是根据单元的早期寿命进行训练的。增量学习过程试图在新的操作条件出现时学习它们。另外三种方法利用了车队中其他类似装置的数据。在两种情况下,使用相似度度量直接对单元进行比较,并将来自相似单元的数据合并到训练集中。在第三种情况下,我们提出了一种新的深度学习方法,首先,使用无监督特征对齐网络(UFAN)对不同单元进行特征对齐。然后,将这两个单元的特征组合到故障检测神经网络的训练集中。这些方法在一个由112台机组组成的机队上进行了测试,观察了一年多的数据。这里提出的所有方法都是对基线的改进,仅用两个月的数据进行了训练。由于发现舰队中的单元非常不同,因此在特征空间中对齐单元的新架构UFAN的性能优于其他架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Fault Detection in Varying Operating Conditions
Training data-driven approaches for complex industrial system health monitoring is challenging. When data on faulty conditions are rare or not available, the training has to be performed in a unsupervised manner. In addition, when the observation period, used for training, is kept short, to be able to monitor the system in its early life, the training data might not be representative of all the system normal operating conditions. In this paper, we propose five approaches to perform fault detection in such context. Two approaches rely on the data from the unit to be monitored only: the baseline is trained on the early life of the unit. An incremental learning procedure tries to learn new operating conditions as they arise. Three other approaches take advantage of data from other similar units within a fleet. In two cases, units are directly compared to each other with similarity measures, and the data from similar units are combined in the training set. We propose, in the third case, a new deep-learning methodology to perform, first, a feature alignment of different units with an Unsupervised Feature Alignment Network (UFAN). Then, features of both units are combined in the training set of the fault detection neural network.The approaches are tested on a fleet comprising 112 units, observed over one year of data. All approaches proposed here are an improvement to the baseline, trained with two months of data only. As units in the fleet are found to be very dissimilar, the new architecture UFAN, that aligns units in the feature space, is outperforming others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信