{"title":"湍流边界层对风浪粗糙度的室内研究","authors":"T. Bhirawa, Kévin, Jh Lee, J. Monty","doi":"10.1115/OMAE2018-77819","DOIUrl":null,"url":null,"abstract":"A laboratory study of turbulent boundary layers over wind-generated waves using Particle Image Velocimetry (PIV) in a wind-wave flume at the University of Melbourne is presented. The experiments are taken at two different wind speeds of 5.5 and 8.5 m/s at a fetch length of 3.5 m. Two types of multi-camera measurement are specifically tailored to capture the flow behaviours.\n The first is a measurement with high spatial resolution, with aims of characterizing the mean velocity, surface drag and Reynolds stresses over the non-stationary surface. The second type is a large field-of-view measurement, designed to capture the large-scale turbulent motions which are directly associated with the surface-wave topography. Although the turbulent flow is developed over a non-stationary surface (i.e. wind-generated waves), it embodies similarities in both integral parameters and Reynolds stress behaviours to the turbulent flows over stationary rough surfaces. This observation could open a possibility to develop an important turbulence model as well as drag prediction over wind-generated waves, which could be closely related to stationary rough-wall boundary layers.","PeriodicalId":124589,"journal":{"name":"Volume 7B: Ocean Engineering","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laboratory Study on the Turbulent Boundary Layers Over Wind-Waves Roughness\",\"authors\":\"T. Bhirawa, Kévin, Jh Lee, J. Monty\",\"doi\":\"10.1115/OMAE2018-77819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A laboratory study of turbulent boundary layers over wind-generated waves using Particle Image Velocimetry (PIV) in a wind-wave flume at the University of Melbourne is presented. The experiments are taken at two different wind speeds of 5.5 and 8.5 m/s at a fetch length of 3.5 m. Two types of multi-camera measurement are specifically tailored to capture the flow behaviours.\\n The first is a measurement with high spatial resolution, with aims of characterizing the mean velocity, surface drag and Reynolds stresses over the non-stationary surface. The second type is a large field-of-view measurement, designed to capture the large-scale turbulent motions which are directly associated with the surface-wave topography. Although the turbulent flow is developed over a non-stationary surface (i.e. wind-generated waves), it embodies similarities in both integral parameters and Reynolds stress behaviours to the turbulent flows over stationary rough surfaces. This observation could open a possibility to develop an important turbulence model as well as drag prediction over wind-generated waves, which could be closely related to stationary rough-wall boundary layers.\",\"PeriodicalId\":124589,\"journal\":{\"name\":\"Volume 7B: Ocean Engineering\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7B: Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2018-77819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-77819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laboratory Study on the Turbulent Boundary Layers Over Wind-Waves Roughness
A laboratory study of turbulent boundary layers over wind-generated waves using Particle Image Velocimetry (PIV) in a wind-wave flume at the University of Melbourne is presented. The experiments are taken at two different wind speeds of 5.5 and 8.5 m/s at a fetch length of 3.5 m. Two types of multi-camera measurement are specifically tailored to capture the flow behaviours.
The first is a measurement with high spatial resolution, with aims of characterizing the mean velocity, surface drag and Reynolds stresses over the non-stationary surface. The second type is a large field-of-view measurement, designed to capture the large-scale turbulent motions which are directly associated with the surface-wave topography. Although the turbulent flow is developed over a non-stationary surface (i.e. wind-generated waves), it embodies similarities in both integral parameters and Reynolds stress behaviours to the turbulent flows over stationary rough surfaces. This observation could open a possibility to develop an important turbulence model as well as drag prediction over wind-generated waves, which could be closely related to stationary rough-wall boundary layers.