学习分割的分类模型

Xiaofeng Ren, Jitendra Malik
{"title":"学习分割的分类模型","authors":"Xiaofeng Ren, Jitendra Malik","doi":"10.1109/ICCV.2003.1238308","DOIUrl":null,"url":null,"abstract":"We propose a two-class classification model for grouping. Human segmented natural images are used as positive examples. Negative examples of grouping are constructed by randomly matching human segmentations and images. In a preprocessing stage an image is over-segmented into super-pixels. We define a variety of features derived from the classical Gestalt cues, including contour, texture, brightness and good continuation. Information-theoretic analysis is applied to evaluate the power of these grouping cues. We train a linear classifier to combine these features. To demonstrate the power of the classification model, a simple algorithm is used to randomly search for good segmentations. Results are shown on a wide range of images.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1819","resultStr":"{\"title\":\"Learning a classification model for segmentation\",\"authors\":\"Xiaofeng Ren, Jitendra Malik\",\"doi\":\"10.1109/ICCV.2003.1238308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a two-class classification model for grouping. Human segmented natural images are used as positive examples. Negative examples of grouping are constructed by randomly matching human segmentations and images. In a preprocessing stage an image is over-segmented into super-pixels. We define a variety of features derived from the classical Gestalt cues, including contour, texture, brightness and good continuation. Information-theoretic analysis is applied to evaluate the power of these grouping cues. We train a linear classifier to combine these features. To demonstrate the power of the classification model, a simple algorithm is used to randomly search for good segmentations. Results are shown on a wide range of images.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1819\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1819

摘要

我们提出了一个两类分类的分组模型。以人类分割的自然图像作为正例。分组的负例是通过随机匹配人类分割和图像来构建的。在预处理阶段,图像被过度分割成超像素。我们从经典格式塔线索中定义了各种特征,包括轮廓、纹理、亮度和良好的连续性。信息论分析应用于评估这些分组线索的力量。我们训练一个线性分类器来组合这些特征。为了展示分类模型的强大功能,我们使用了一个简单的算法来随机搜索好的分割。结果显示在广泛的图像上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning a classification model for segmentation
We propose a two-class classification model for grouping. Human segmented natural images are used as positive examples. Negative examples of grouping are constructed by randomly matching human segmentations and images. In a preprocessing stage an image is over-segmented into super-pixels. We define a variety of features derived from the classical Gestalt cues, including contour, texture, brightness and good continuation. Information-theoretic analysis is applied to evaluate the power of these grouping cues. We train a linear classifier to combine these features. To demonstrate the power of the classification model, a simple algorithm is used to randomly search for good segmentations. Results are shown on a wide range of images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信