多目标和谐搜索算法的不同停止准则

Iyad Abu Doush, Mohammad Qasem Bataineh, Mohammed El-Abd
{"title":"多目标和谐搜索算法的不同停止准则","authors":"Iyad Abu Doush, Mohammad Qasem Bataineh, Mohammed El-Abd","doi":"10.1145/3325773.3325774","DOIUrl":null,"url":null,"abstract":"In evolutionary multi-objective optimization, an evolutionary algorithm is used to solve an optimization problem having multiple, and usually conflicting objective functions. Previous proposed approaches to solve multi-objective optimization problems include NSGA-II, MOEA/D, MOPSO, and MOHS/D algorithms. In our previous work, we enhanced the performance of MOHS/D using a hybrid framework with population diversity monitoring. The population diversity was measured every a predetermined number of iterations to either invoke local search or a diversity enhancement mechanism. In this work, two different stopping criteria are compared using four the HS hybrid frameworks we previously proposed. The stopping criteria compared are the moving average and MGBM. The experimental study is carried using the ZDT, DTLZ and CEC2009 benchmarks. The experimental results show that the moving average stopping criteria gives better results for the majority of the datasets.","PeriodicalId":419017,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Different Stopping Criteria for Multi-objective Harmony Search Algorithms\",\"authors\":\"Iyad Abu Doush, Mohammad Qasem Bataineh, Mohammed El-Abd\",\"doi\":\"10.1145/3325773.3325774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In evolutionary multi-objective optimization, an evolutionary algorithm is used to solve an optimization problem having multiple, and usually conflicting objective functions. Previous proposed approaches to solve multi-objective optimization problems include NSGA-II, MOEA/D, MOPSO, and MOHS/D algorithms. In our previous work, we enhanced the performance of MOHS/D using a hybrid framework with population diversity monitoring. The population diversity was measured every a predetermined number of iterations to either invoke local search or a diversity enhancement mechanism. In this work, two different stopping criteria are compared using four the HS hybrid frameworks we previously proposed. The stopping criteria compared are the moving average and MGBM. The experimental study is carried using the ZDT, DTLZ and CEC2009 benchmarks. The experimental results show that the moving average stopping criteria gives better results for the majority of the datasets.\",\"PeriodicalId\":419017,\"journal\":{\"name\":\"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3325773.3325774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3325773.3325774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在进化多目标优化中,一种进化算法用于解决具有多个且通常相互冲突的目标函数的优化问题。先前提出的多目标优化问题的求解方法包括NSGA-II、MOEA/D、MOPSO和MOHS/D算法。在我们之前的工作中,我们使用混合框架和种群多样性监测来提高MOHS/D的性能。每预先确定的迭代次数测量种群多样性,以调用局部搜索或多样性增强机制。在这项工作中,使用我们之前提出的四种HS混合框架比较了两种不同的停止标准。比较的止损标准是移动平均线和MGBM。采用ZDT、DTLZ和CEC2009基准进行了实验研究。实验结果表明,移动平均停止准则对大多数数据集具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Different Stopping Criteria for Multi-objective Harmony Search Algorithms
In evolutionary multi-objective optimization, an evolutionary algorithm is used to solve an optimization problem having multiple, and usually conflicting objective functions. Previous proposed approaches to solve multi-objective optimization problems include NSGA-II, MOEA/D, MOPSO, and MOHS/D algorithms. In our previous work, we enhanced the performance of MOHS/D using a hybrid framework with population diversity monitoring. The population diversity was measured every a predetermined number of iterations to either invoke local search or a diversity enhancement mechanism. In this work, two different stopping criteria are compared using four the HS hybrid frameworks we previously proposed. The stopping criteria compared are the moving average and MGBM. The experimental study is carried using the ZDT, DTLZ and CEC2009 benchmarks. The experimental results show that the moving average stopping criteria gives better results for the majority of the datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信