{"title":"基于180nm CMOS的220GHz高增益片上天线","authors":"Jiaming Yang, Dasheng Cui, Zhengzhi Ding, X. Lv","doi":"10.1109/ISAPE.2018.8634228","DOIUrl":null,"url":null,"abstract":"This paper presents an on-chip integrated antenna based on 180nm-CMOS process. By loading the artificial magnetic conductor(AMC) structure under the antenna, the antenna gain is improved and the radiation pattern is optimized. The peak gain of this antenna reaches 9.6 dBi with low side lobes. The bandwidth is increased to 212–227GHz by using a special structural connection between the feed line and the antenna.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"220GHz High Gain On-chip Antenna Based on 180nm CMOS\",\"authors\":\"Jiaming Yang, Dasheng Cui, Zhengzhi Ding, X. Lv\",\"doi\":\"10.1109/ISAPE.2018.8634228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an on-chip integrated antenna based on 180nm-CMOS process. By loading the artificial magnetic conductor(AMC) structure under the antenna, the antenna gain is improved and the radiation pattern is optimized. The peak gain of this antenna reaches 9.6 dBi with low side lobes. The bandwidth is increased to 212–227GHz by using a special structural connection between the feed line and the antenna.\",\"PeriodicalId\":297368,\"journal\":{\"name\":\"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAPE.2018.8634228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAPE.2018.8634228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
220GHz High Gain On-chip Antenna Based on 180nm CMOS
This paper presents an on-chip integrated antenna based on 180nm-CMOS process. By loading the artificial magnetic conductor(AMC) structure under the antenna, the antenna gain is improved and the radiation pattern is optimized. The peak gain of this antenna reaches 9.6 dBi with low side lobes. The bandwidth is increased to 212–227GHz by using a special structural connection between the feed line and the antenna.