信用评分采用增量学习算法进行SVDD

Yongquan Cai, Yuchen Jiang
{"title":"信用评分采用增量学习算法进行SVDD","authors":"Yongquan Cai, Yuchen Jiang","doi":"10.1109/CITS.2016.7546435","DOIUrl":null,"url":null,"abstract":"Support Vector Data Description (SVDD) has a limitation for dealing with a large dataset or online learning tasks. This work investigates the practice of credit scoring and proposes a new incremental learning algorithm for SVDD based on Karush-Kuhn-Tucker (KKT) conditions and convex hull. Convex hull and part of newly added samples which violates KKT conditions are treated as new training samples instead of previous support vector and entire new arrived samples. The proposed method can achieve comparable training time with traditional incremental learning algorithm for SVDD while have similar classification accuracy with original SVDD.","PeriodicalId":340958,"journal":{"name":"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Credit scoring using incremental learning algorithm for SVDD\",\"authors\":\"Yongquan Cai, Yuchen Jiang\",\"doi\":\"10.1109/CITS.2016.7546435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Data Description (SVDD) has a limitation for dealing with a large dataset or online learning tasks. This work investigates the practice of credit scoring and proposes a new incremental learning algorithm for SVDD based on Karush-Kuhn-Tucker (KKT) conditions and convex hull. Convex hull and part of newly added samples which violates KKT conditions are treated as new training samples instead of previous support vector and entire new arrived samples. The proposed method can achieve comparable training time with traditional incremental learning algorithm for SVDD while have similar classification accuracy with original SVDD.\",\"PeriodicalId\":340958,\"journal\":{\"name\":\"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CITS.2016.7546435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITS.2016.7546435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

支持向量数据描述(SVDD)在处理大型数据集或在线学习任务方面存在局限性。本文研究了信用评分的实践,并提出了一种新的基于KKT条件和凸包的SVDD增量学习算法。凸包和部分违反KKT条件的新增样本被视为新的训练样本,而不是之前的支持向量和整个新到达样本。该方法的训练时间与传统的SVDD增量学习算法相当,分类精度与原始SVDD相近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Credit scoring using incremental learning algorithm for SVDD
Support Vector Data Description (SVDD) has a limitation for dealing with a large dataset or online learning tasks. This work investigates the practice of credit scoring and proposes a new incremental learning algorithm for SVDD based on Karush-Kuhn-Tucker (KKT) conditions and convex hull. Convex hull and part of newly added samples which violates KKT conditions are treated as new training samples instead of previous support vector and entire new arrived samples. The proposed method can achieve comparable training time with traditional incremental learning algorithm for SVDD while have similar classification accuracy with original SVDD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信