语义分割的部分类激活注意

Sun'ao Liu, Hongtao Xie, Hai Xu, Yongdong Zhang, Qi Tian
{"title":"语义分割的部分类激活注意","authors":"Sun'ao Liu, Hongtao Xie, Hai Xu, Yongdong Zhang, Qi Tian","doi":"10.1109/CVPR52688.2022.01633","DOIUrl":null,"url":null,"abstract":"Current attention-based methods for semantic segmentation mainly model pixel relation through pairwise affinity and coarse segmentation. For the first time, this paper explores modeling pixel relation via Class Activation Map (CAM). Beyond the previous CAM generated from image-level classification, we present Partial CAM, which sub-divides the task into region-level prediction and achieves better localization performance. In order to eliminate the intra-class inconsistency caused by the variances of local context, we further propose Partial Class Activation Attention (PCAA) that simultaneously utilizes local and global class-level representations for attention calculation. Once obtained the partial CAM, PCAA collects local class centers and computes pixel-to-class relation locally. Applying local-specific representations ensures reliable results under different local contexts. To guarantee global consistency, we gather global representations from all local class centers and conduct feature aggregation. Experimental results confirm that Partial CAM outperforms the previous two strategies as pixel relation. Notably, our method achieves state-of-the-art performance on several challenging benchmarks including Cityscapes, Pascal Context, and ADE20K. Code is available at https://github.com/lsa1997/PCAA.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Partial Class Activation Attention for Semantic Segmentation\",\"authors\":\"Sun'ao Liu, Hongtao Xie, Hai Xu, Yongdong Zhang, Qi Tian\",\"doi\":\"10.1109/CVPR52688.2022.01633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current attention-based methods for semantic segmentation mainly model pixel relation through pairwise affinity and coarse segmentation. For the first time, this paper explores modeling pixel relation via Class Activation Map (CAM). Beyond the previous CAM generated from image-level classification, we present Partial CAM, which sub-divides the task into region-level prediction and achieves better localization performance. In order to eliminate the intra-class inconsistency caused by the variances of local context, we further propose Partial Class Activation Attention (PCAA) that simultaneously utilizes local and global class-level representations for attention calculation. Once obtained the partial CAM, PCAA collects local class centers and computes pixel-to-class relation locally. Applying local-specific representations ensures reliable results under different local contexts. To guarantee global consistency, we gather global representations from all local class centers and conduct feature aggregation. Experimental results confirm that Partial CAM outperforms the previous two strategies as pixel relation. Notably, our method achieves state-of-the-art performance on several challenging benchmarks including Cityscapes, Pascal Context, and ADE20K. Code is available at https://github.com/lsa1997/PCAA.\",\"PeriodicalId\":355552,\"journal\":{\"name\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52688.2022.01633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.01633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

目前基于注意力的语义分割方法主要通过两两亲和和粗分割对像素关系进行建模。本文首次探索了基于类激活图(Class Activation Map, CAM)的像素关系建模方法。在以往基于图像级分类生成CAM的基础上,我们提出了局部CAM,将任务细分为区域级预测,实现了更好的定位性能。为了消除局部上下文差异引起的类内不一致性,我们进一步提出了部分类激活注意(PCAA),该方法同时利用局部和全局类级别表示进行注意力计算。一旦获得部分CAM, PCAA收集局部类中心,并在局部计算像素到类的关系。应用特定于本地的表示可确保在不同的本地上下文中得到可靠的结果。为了保证全局一致性,我们从所有局部类中心收集全局表示并进行特征聚合。实验结果表明,局部CAM在像素关系方面优于前两种策略。值得注意的是,我们的方法在几个具有挑战性的基准测试中实现了最先进的性能,包括cityscape、Pascal Context和ADE20K。代码可从https://github.com/lsa1997/PCAA获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial Class Activation Attention for Semantic Segmentation
Current attention-based methods for semantic segmentation mainly model pixel relation through pairwise affinity and coarse segmentation. For the first time, this paper explores modeling pixel relation via Class Activation Map (CAM). Beyond the previous CAM generated from image-level classification, we present Partial CAM, which sub-divides the task into region-level prediction and achieves better localization performance. In order to eliminate the intra-class inconsistency caused by the variances of local context, we further propose Partial Class Activation Attention (PCAA) that simultaneously utilizes local and global class-level representations for attention calculation. Once obtained the partial CAM, PCAA collects local class centers and computes pixel-to-class relation locally. Applying local-specific representations ensures reliable results under different local contexts. To guarantee global consistency, we gather global representations from all local class centers and conduct feature aggregation. Experimental results confirm that Partial CAM outperforms the previous two strategies as pixel relation. Notably, our method achieves state-of-the-art performance on several challenging benchmarks including Cityscapes, Pascal Context, and ADE20K. Code is available at https://github.com/lsa1997/PCAA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信