基于支持向量机的往复式空压机故障优化诊断方法

N. Verma, Abhishek Roy, A. Salour
{"title":"基于支持向量机的往复式空压机故障优化诊断方法","authors":"N. Verma, Abhishek Roy, A. Salour","doi":"10.1109/ICSENGT.2011.5993422","DOIUrl":null,"url":null,"abstract":"Fault diagnosis in reciprocating air compressors is essential for continuous monitoring of their performance and thereby ensuring quality output. Support Vector Machines (SVMs) are machine learning tools based on structural risk minimization principle and have the advantageous characteristic of good generalization. For this reason, four well-known and widely used SVM based methods, one-against-one (OAO), oneagainst-all (OAA), fuzzy decision function (FDF), and DDAG have been used here and an optimized SVM based technique is proposed for classification based fault diagnosis in reciprocating air compressors. The results obtained through implementation of all five techniques are thus compared as per their accuracy rate in percentages and the performance of the proposed method with 98.03 percent accuracy rate was found to be better than all other classification methods. With the compressor datasets being complex natured, proposed method is found to be of vital importance for classification based fault diagnosis pertaining to reciprocating air compressors.","PeriodicalId":346890,"journal":{"name":"2011 IEEE International Conference on System Engineering and Technology","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An optimized fault diagnosis method for reciprocating air compressors based on SVM\",\"authors\":\"N. Verma, Abhishek Roy, A. Salour\",\"doi\":\"10.1109/ICSENGT.2011.5993422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault diagnosis in reciprocating air compressors is essential for continuous monitoring of their performance and thereby ensuring quality output. Support Vector Machines (SVMs) are machine learning tools based on structural risk minimization principle and have the advantageous characteristic of good generalization. For this reason, four well-known and widely used SVM based methods, one-against-one (OAO), oneagainst-all (OAA), fuzzy decision function (FDF), and DDAG have been used here and an optimized SVM based technique is proposed for classification based fault diagnosis in reciprocating air compressors. The results obtained through implementation of all five techniques are thus compared as per their accuracy rate in percentages and the performance of the proposed method with 98.03 percent accuracy rate was found to be better than all other classification methods. With the compressor datasets being complex natured, proposed method is found to be of vital importance for classification based fault diagnosis pertaining to reciprocating air compressors.\",\"PeriodicalId\":346890,\"journal\":{\"name\":\"2011 IEEE International Conference on System Engineering and Technology\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on System Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENGT.2011.5993422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on System Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENGT.2011.5993422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

往复式空压机的故障诊断对于连续监测其性能,从而确保高质量的输出至关重要。支持向量机(svm)是基于结构风险最小化原理的机器学习工具,具有良好的泛化特性。为此,本文采用了四种常用的基于支持向量机的方法,即单对一(OAO)、一对全(OAA)、模糊决策函数(FDF)和DDAG,并提出了一种优化的基于支持向量机的往复式空压机分类故障诊断方法。通过对这五种方法的准确率进行百分比比较,发现所提出的方法的准确率为98.03%,优于所有其他分类方法。由于压缩机数据集的复杂性,该方法对往复式空压机的分类故障诊断具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimized fault diagnosis method for reciprocating air compressors based on SVM
Fault diagnosis in reciprocating air compressors is essential for continuous monitoring of their performance and thereby ensuring quality output. Support Vector Machines (SVMs) are machine learning tools based on structural risk minimization principle and have the advantageous characteristic of good generalization. For this reason, four well-known and widely used SVM based methods, one-against-one (OAO), oneagainst-all (OAA), fuzzy decision function (FDF), and DDAG have been used here and an optimized SVM based technique is proposed for classification based fault diagnosis in reciprocating air compressors. The results obtained through implementation of all five techniques are thus compared as per their accuracy rate in percentages and the performance of the proposed method with 98.03 percent accuracy rate was found to be better than all other classification methods. With the compressor datasets being complex natured, proposed method is found to be of vital importance for classification based fault diagnosis pertaining to reciprocating air compressors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信