基于二维平铺和AVX512特性的矩阵-矩阵乘法速度的改进

Nwe Zin Oo, P. Chaikan
{"title":"基于二维平铺和AVX512特性的矩阵-矩阵乘法速度的改进","authors":"Nwe Zin Oo, P. Chaikan","doi":"10.55164/ajstr.v24i2.242021","DOIUrl":null,"url":null,"abstract":"Matrix-matrix multiplication is a time-consuming operation in scientific and engineering applications. When the matrix size is large, it will take a lot of computation time, resulting in slow software which is unacceptable in real-time applications. In this paper, 2D-tiling, loop unrolling, data padding, OpenMP directives, and AVX512 intrinsics are utilized to increase the speed of matrix-matrix multiplication on multi-core architectures. Our algorithm, tested on a Core i9-7900X machine, is more than two times faster than the operations offered by the OpenBLAS and Eigen libraries for single and double precision floating-point matrices. We also propose an equation for parameter tuning which allows our algorithm to be adapted to process any size of matrix on CPUs with different cache organizations.","PeriodicalId":426475,"journal":{"name":"ASEAN Journal of Scientific and Technological Reports","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improvement of the Matrix-Matrix Multiplication Speed using 2D-Tiling and AVX512 Intrinsics for Multi-Core Architectures\",\"authors\":\"Nwe Zin Oo, P. Chaikan\",\"doi\":\"10.55164/ajstr.v24i2.242021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix-matrix multiplication is a time-consuming operation in scientific and engineering applications. When the matrix size is large, it will take a lot of computation time, resulting in slow software which is unacceptable in real-time applications. In this paper, 2D-tiling, loop unrolling, data padding, OpenMP directives, and AVX512 intrinsics are utilized to increase the speed of matrix-matrix multiplication on multi-core architectures. Our algorithm, tested on a Core i9-7900X machine, is more than two times faster than the operations offered by the OpenBLAS and Eigen libraries for single and double precision floating-point matrices. We also propose an equation for parameter tuning which allows our algorithm to be adapted to process any size of matrix on CPUs with different cache organizations.\",\"PeriodicalId\":426475,\"journal\":{\"name\":\"ASEAN Journal of Scientific and Technological Reports\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEAN Journal of Scientific and Technological Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55164/ajstr.v24i2.242021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Scientific and Technological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55164/ajstr.v24i2.242021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矩阵-矩阵乘法在科学和工程应用中是一个耗时的运算。当矩阵大小较大时,会占用大量的计算时间,导致软件运行缓慢,这在实时应用中是不可接受的。本文利用二维平铺、循环展开、数据填充、OpenMP指令和AVX512特性来提高多核架构上矩阵-矩阵乘法的速度。我们的算法在酷睿i9-7900X机器上进行了测试,它比OpenBLAS和Eigen库提供的单精度和双精度浮点矩阵的操作快两倍以上。我们还提出了一个参数调优方程,该方程允许我们的算法适应在具有不同缓存组织的cpu上处理任何大小的矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improvement of the Matrix-Matrix Multiplication Speed using 2D-Tiling and AVX512 Intrinsics for Multi-Core Architectures
Matrix-matrix multiplication is a time-consuming operation in scientific and engineering applications. When the matrix size is large, it will take a lot of computation time, resulting in slow software which is unacceptable in real-time applications. In this paper, 2D-tiling, loop unrolling, data padding, OpenMP directives, and AVX512 intrinsics are utilized to increase the speed of matrix-matrix multiplication on multi-core architectures. Our algorithm, tested on a Core i9-7900X machine, is more than two times faster than the operations offered by the OpenBLAS and Eigen libraries for single and double precision floating-point matrices. We also propose an equation for parameter tuning which allows our algorithm to be adapted to process any size of matrix on CPUs with different cache organizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信