基于布谷鸟搜索优化的小波神经网络股票市场预测

Hua Zhi, Jinghua Zhang, Zhengbo Xue, Yan Zhang
{"title":"基于布谷鸟搜索优化的小波神经网络股票市场预测","authors":"Hua Zhi, Jinghua Zhang, Zhengbo Xue, Yan Zhang","doi":"10.1109/ICSESS.2017.8342977","DOIUrl":null,"url":null,"abstract":"As a typical nonlinear deterministic dynamical system, stock market can be predicted by Wavelet Neural Network. Since Cuckoo Search is a new heuristic bionic group intelligent optimization algorithm, it can be widely used in various optimization problems. In this paper, we use Cuckoo Search (CS) to optimize the initial parameters of wavelet neural network. Results of the experiment show that the optimized CS-WNN has higher prediction accuracy than the traditional WNN in stock market forecast.","PeriodicalId":179815,"journal":{"name":"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stock market forecast based on wavelet neural network optimized by Cuckoo search\",\"authors\":\"Hua Zhi, Jinghua Zhang, Zhengbo Xue, Yan Zhang\",\"doi\":\"10.1109/ICSESS.2017.8342977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a typical nonlinear deterministic dynamical system, stock market can be predicted by Wavelet Neural Network. Since Cuckoo Search is a new heuristic bionic group intelligent optimization algorithm, it can be widely used in various optimization problems. In this paper, we use Cuckoo Search (CS) to optimize the initial parameters of wavelet neural network. Results of the experiment show that the optimized CS-WNN has higher prediction accuracy than the traditional WNN in stock market forecast.\",\"PeriodicalId\":179815,\"journal\":{\"name\":\"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"volume\":\"219 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2017.8342977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2017.8342977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

股票市场作为一个典型的非线性确定性动力系统,可以用小波神经网络进行预测。布谷鸟搜索是一种新型的启发式仿生群智能优化算法,可广泛应用于各种优化问题。本文采用布谷鸟搜索法对小波神经网络的初始参数进行优化。实验结果表明,优化后的CS-WNN在股市预测中比传统的WNN具有更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stock market forecast based on wavelet neural network optimized by Cuckoo search
As a typical nonlinear deterministic dynamical system, stock market can be predicted by Wavelet Neural Network. Since Cuckoo Search is a new heuristic bionic group intelligent optimization algorithm, it can be widely used in various optimization problems. In this paper, we use Cuckoo Search (CS) to optimize the initial parameters of wavelet neural network. Results of the experiment show that the optimized CS-WNN has higher prediction accuracy than the traditional WNN in stock market forecast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信