基于生成对抗网络的鲁棒性优化方法

S. Bergmann, N. Feldkamp, Florian Conrad, S. Strassburger
{"title":"基于生成对抗网络的鲁棒性优化方法","authors":"S. Bergmann, N. Feldkamp, Florian Conrad, S. Strassburger","doi":"10.1145/3384441.3395981","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for optimizing the robustness of production and logistic systems based on deep generative models, a special method of deep learning. Robustness here refers to setting controllable factors of a system in such a way that variance in the uncontrollable factors (noise) has a minimal effect on given output parameters. In a case study, the proposed method is tested and compared to a traditional method for robustness analysis. The basic idea is to use deep neural networks to generate data for experiment plans and rate them by use of a simulation model of the production system. We propose to use two Generative Adversarial Networks (GANs) to generate optimized experiment plans for the decision factors and the noise factors, respectively, in a competitive, turn-based game. In one turn, the controllable factors are optimized and the noise remains constant, and vice versa in the next turn. For the calculations of the robustness, the planned experiments are conducted and rated using a simulation model in each learning step.","PeriodicalId":422248,"journal":{"name":"Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Method for Robustness Optimization Using Generative Adversarial Networks\",\"authors\":\"S. Bergmann, N. Feldkamp, Florian Conrad, S. Strassburger\",\"doi\":\"10.1145/3384441.3395981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach for optimizing the robustness of production and logistic systems based on deep generative models, a special method of deep learning. Robustness here refers to setting controllable factors of a system in such a way that variance in the uncontrollable factors (noise) has a minimal effect on given output parameters. In a case study, the proposed method is tested and compared to a traditional method for robustness analysis. The basic idea is to use deep neural networks to generate data for experiment plans and rate them by use of a simulation model of the production system. We propose to use two Generative Adversarial Networks (GANs) to generate optimized experiment plans for the decision factors and the noise factors, respectively, in a competitive, turn-based game. In one turn, the controllable factors are optimized and the noise remains constant, and vice versa in the next turn. For the calculations of the robustness, the planned experiments are conducted and rated using a simulation model in each learning step.\",\"PeriodicalId\":422248,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3384441.3395981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384441.3395981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于深度生成模型的生产和物流系统鲁棒性优化方法,这是一种特殊的深度学习方法。这里的鲁棒性是指设置系统的可控因素,使不可控因素(噪声)的方差对给定输出参数的影响最小。在一个案例研究中,对所提出的方法进行了测试,并与传统的鲁棒性分析方法进行了比较。其基本思想是使用深度神经网络为实验计划生成数据,并通过使用生产系统的仿真模型对其进行评级。我们建议使用两个生成对抗网络(GANs)分别为竞争性回合制博弈中的决策因素和噪声因素生成优化的实验计划。在一圈内,可控因素得到优化,噪声保持不变;在下一圈中,反之亦然。对于鲁棒性的计算,在每个学习步骤中使用仿真模型进行计划实验并进行评级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Method for Robustness Optimization Using Generative Adversarial Networks
This paper presents an approach for optimizing the robustness of production and logistic systems based on deep generative models, a special method of deep learning. Robustness here refers to setting controllable factors of a system in such a way that variance in the uncontrollable factors (noise) has a minimal effect on given output parameters. In a case study, the proposed method is tested and compared to a traditional method for robustness analysis. The basic idea is to use deep neural networks to generate data for experiment plans and rate them by use of a simulation model of the production system. We propose to use two Generative Adversarial Networks (GANs) to generate optimized experiment plans for the decision factors and the noise factors, respectively, in a competitive, turn-based game. In one turn, the controllable factors are optimized and the noise remains constant, and vice versa in the next turn. For the calculations of the robustness, the planned experiments are conducted and rated using a simulation model in each learning step.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信