基于局部最小的非晶格蛋白质折叠探索

E. Santos, K. Kim, Eunice E. Santos
{"title":"基于局部最小的非晶格蛋白质折叠探索","authors":"E. Santos, K. Kim, Eunice E. Santos","doi":"10.1109/CSB.2003.1227424","DOIUrl":null,"url":null,"abstract":"We present a new and simple algorithmic approach to help predict protein structures from amino acid sequences based on energy minimization. In the search for the minimal energy conformation, we analyze and exploit the protein structures found at the various local minima to direct the search the global minimum. As such, we explore the energy landscape efficiently by considering only the space of local minima instead of the whole feasible space of conformations. Our specific algorithmic approach is comprised of two different elements: local minimization and operators from genetic algorithms. Unlike existing hybrid approaches where the local optimization is used to fine-tune the solutions, we focus primarily on the local optimization and employ stochastic sampling through genetic operators for diversification. Our empirical results indicate that each local minimum is representative of the substructures contained in the set of solutions surrounding the local minima. We applied our approach to determining the minimal energy conformation of proteins from the protein data bank (PDB) using the CHARMM and UNRES energy model. We compared against standard genetic algorithms and Monte Carlo approaches as well as the conformations found in the PDB as the baseline. In all cases, our new approach computed the lowest energy conformation.","PeriodicalId":147883,"journal":{"name":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Local minima-based exploration for off-lattice protein folding\",\"authors\":\"E. Santos, K. Kim, Eunice E. Santos\",\"doi\":\"10.1109/CSB.2003.1227424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new and simple algorithmic approach to help predict protein structures from amino acid sequences based on energy minimization. In the search for the minimal energy conformation, we analyze and exploit the protein structures found at the various local minima to direct the search the global minimum. As such, we explore the energy landscape efficiently by considering only the space of local minima instead of the whole feasible space of conformations. Our specific algorithmic approach is comprised of two different elements: local minimization and operators from genetic algorithms. Unlike existing hybrid approaches where the local optimization is used to fine-tune the solutions, we focus primarily on the local optimization and employ stochastic sampling through genetic operators for diversification. Our empirical results indicate that each local minimum is representative of the substructures contained in the set of solutions surrounding the local minima. We applied our approach to determining the minimal energy conformation of proteins from the protein data bank (PDB) using the CHARMM and UNRES energy model. We compared against standard genetic algorithms and Monte Carlo approaches as well as the conformations found in the PDB as the baseline. In all cases, our new approach computed the lowest energy conformation.\",\"PeriodicalId\":147883,\"journal\":{\"name\":\"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSB.2003.1227424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2003.1227424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们提出了一种新的简单的算法方法来帮助预测基于能量最小化的氨基酸序列的蛋白质结构。在寻找最小能量构象时,我们分析和利用在各种局部最小值处发现的蛋白质结构来指导搜索全局最小值。因此,我们通过只考虑局部最小值空间而不是整个构象可行空间来有效地探索能量景观。我们的具体算法方法由两个不同的元素组成:局部最小化和遗传算法中的算子。与现有的混合方法不同,我们主要关注局部优化,并通过遗传算子采用随机抽样来实现多样化。我们的经验结果表明,每个局部最小值都代表了包含在局部最小值周围的解集中的子结构。我们使用CHARMM和UNRES能量模型从蛋白质数据库(PDB)中确定蛋白质的最小能量构象。我们比较了标准遗传算法和蒙特卡罗方法以及在PDB中发现的构象作为基线。在所有情况下,我们的新方法都计算出了能量最低的构象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local minima-based exploration for off-lattice protein folding
We present a new and simple algorithmic approach to help predict protein structures from amino acid sequences based on energy minimization. In the search for the minimal energy conformation, we analyze and exploit the protein structures found at the various local minima to direct the search the global minimum. As such, we explore the energy landscape efficiently by considering only the space of local minima instead of the whole feasible space of conformations. Our specific algorithmic approach is comprised of two different elements: local minimization and operators from genetic algorithms. Unlike existing hybrid approaches where the local optimization is used to fine-tune the solutions, we focus primarily on the local optimization and employ stochastic sampling through genetic operators for diversification. Our empirical results indicate that each local minimum is representative of the substructures contained in the set of solutions surrounding the local minima. We applied our approach to determining the minimal energy conformation of proteins from the protein data bank (PDB) using the CHARMM and UNRES energy model. We compared against standard genetic algorithms and Monte Carlo approaches as well as the conformations found in the PDB as the baseline. In all cases, our new approach computed the lowest energy conformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信