{"title":"基于分形EBG结构的高性能圆极化天线","authors":"X. Bao, M. Ammann, G. Ruvio, M. John","doi":"10.1109/IWAT.2006.1609024","DOIUrl":null,"url":null,"abstract":"th iteration). For the 1 st and 2 rd iteration, each side is replaced with new scaled generator (A1=A/3; B1=0.5*A1, A2=A1/3, B2=0.5*A2), where A1, A2 and B1, B2 are segment and indentation lengths, respectively (Fig.1). The period of the proposed EBG structure is 32.5mm, and A=27mm. A fractal patch connected to the continuous ground plane through a shorting pin constitutes a unit of the lattice. The radius of the shorting pin is 0.5mm. The dispersion characteristics of the fractal Hi-Impedance Surface EBG structure is calculated using the Finite Element Method (FEM). The results illustrated in Fig.2 show a wide bandgap from 1.27GHz to 2.05GHz. A square patch antenna with truncated opposite corners is designed as Fig.3, which excites both the TM01 and TM10 orthogonal modes, can produce circularly polarized fields. The square patch antenna size is 56.0×56.0m","PeriodicalId":162557,"journal":{"name":"IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, 2006.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High Performance Circularly Polarized Antenna Based on the Fractal EBG structure\",\"authors\":\"X. Bao, M. Ammann, G. Ruvio, M. John\",\"doi\":\"10.1109/IWAT.2006.1609024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"th iteration). For the 1 st and 2 rd iteration, each side is replaced with new scaled generator (A1=A/3; B1=0.5*A1, A2=A1/3, B2=0.5*A2), where A1, A2 and B1, B2 are segment and indentation lengths, respectively (Fig.1). The period of the proposed EBG structure is 32.5mm, and A=27mm. A fractal patch connected to the continuous ground plane through a shorting pin constitutes a unit of the lattice. The radius of the shorting pin is 0.5mm. The dispersion characteristics of the fractal Hi-Impedance Surface EBG structure is calculated using the Finite Element Method (FEM). The results illustrated in Fig.2 show a wide bandgap from 1.27GHz to 2.05GHz. A square patch antenna with truncated opposite corners is designed as Fig.3, which excites both the TM01 and TM10 orthogonal modes, can produce circularly polarized fields. The square patch antenna size is 56.0×56.0m\",\"PeriodicalId\":162557,\"journal\":{\"name\":\"IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, 2006.\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, 2006.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAT.2006.1609024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, 2006.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2006.1609024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Performance Circularly Polarized Antenna Based on the Fractal EBG structure
th iteration). For the 1 st and 2 rd iteration, each side is replaced with new scaled generator (A1=A/3; B1=0.5*A1, A2=A1/3, B2=0.5*A2), where A1, A2 and B1, B2 are segment and indentation lengths, respectively (Fig.1). The period of the proposed EBG structure is 32.5mm, and A=27mm. A fractal patch connected to the continuous ground plane through a shorting pin constitutes a unit of the lattice. The radius of the shorting pin is 0.5mm. The dispersion characteristics of the fractal Hi-Impedance Surface EBG structure is calculated using the Finite Element Method (FEM). The results illustrated in Fig.2 show a wide bandgap from 1.27GHz to 2.05GHz. A square patch antenna with truncated opposite corners is designed as Fig.3, which excites both the TM01 and TM10 orthogonal modes, can produce circularly polarized fields. The square patch antenna size is 56.0×56.0m