智能地毯:从触觉信号推断3D人体姿势

Yiyue Luo, Yunzhu Li, Michael Foshey, Wan Shou, Pratyusha Sharma, Tomás Palacios, A. Torralba, W. Matusik
{"title":"智能地毯:从触觉信号推断3D人体姿势","authors":"Yiyue Luo, Yunzhu Li, Michael Foshey, Wan Shou, Pratyusha Sharma, Tomás Palacios, A. Torralba, W. Matusik","doi":"10.1109/CVPR46437.2021.01110","DOIUrl":null,"url":null,"abstract":"Daily human activities, e.g., locomotion, exercises, and resting, are heavily guided by the tactile interactions between the human and the ground. In this work, leveraging such tactile interactions, we propose a 3D human pose estimation approach using the pressure maps recorded by a tactile carpet as input. We build a low-cost, high-density, large-scale intelligent carpet, which enables the real-time recordings of human-floor tactile interactions in a seamless manner. We collect a synchronized tactile and visual dataset on various human activities. Employing a state-of-the-art camera-based pose estimation model as supervision, we design and implement a deep neural network model to infer 3D human poses using only the tactile information. Our pipeline can be further scaled up to multi-person pose estimation. We evaluate our system and demonstrate its potential applications in diverse fields.","PeriodicalId":339646,"journal":{"name":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Intelligent Carpet: Inferring 3D Human Pose from Tactile Signals\",\"authors\":\"Yiyue Luo, Yunzhu Li, Michael Foshey, Wan Shou, Pratyusha Sharma, Tomás Palacios, A. Torralba, W. Matusik\",\"doi\":\"10.1109/CVPR46437.2021.01110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Daily human activities, e.g., locomotion, exercises, and resting, are heavily guided by the tactile interactions between the human and the ground. In this work, leveraging such tactile interactions, we propose a 3D human pose estimation approach using the pressure maps recorded by a tactile carpet as input. We build a low-cost, high-density, large-scale intelligent carpet, which enables the real-time recordings of human-floor tactile interactions in a seamless manner. We collect a synchronized tactile and visual dataset on various human activities. Employing a state-of-the-art camera-based pose estimation model as supervision, we design and implement a deep neural network model to infer 3D human poses using only the tactile information. Our pipeline can be further scaled up to multi-person pose estimation. We evaluate our system and demonstrate its potential applications in diverse fields.\",\"PeriodicalId\":339646,\"journal\":{\"name\":\"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR46437.2021.01110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR46437.2021.01110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

人类的日常活动,如运动、锻炼和休息,在很大程度上是由人与地面之间的触觉相互作用指导的。在这项工作中,利用这种触觉交互,我们提出了一种3D人体姿势估计方法,使用触觉地毯记录的压力图作为输入。我们打造了一个低成本、高密度、大规模的智能地毯,可以无缝地实时记录人与地板的触觉互动。我们收集了各种人类活动的同步触觉和视觉数据集。采用最先进的基于相机的姿态估计模型作为监督,我们设计并实现了一个深度神经网络模型,仅使用触觉信息来推断3D人体姿态。我们的流水线可以进一步扩展到多人姿态估计。我们评估了我们的系统,并展示了它在不同领域的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Carpet: Inferring 3D Human Pose from Tactile Signals
Daily human activities, e.g., locomotion, exercises, and resting, are heavily guided by the tactile interactions between the human and the ground. In this work, leveraging such tactile interactions, we propose a 3D human pose estimation approach using the pressure maps recorded by a tactile carpet as input. We build a low-cost, high-density, large-scale intelligent carpet, which enables the real-time recordings of human-floor tactile interactions in a seamless manner. We collect a synchronized tactile and visual dataset on various human activities. Employing a state-of-the-art camera-based pose estimation model as supervision, we design and implement a deep neural network model to infer 3D human poses using only the tactile information. Our pipeline can be further scaled up to multi-person pose estimation. We evaluate our system and demonstrate its potential applications in diverse fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信