{"title":"SGD2:基于安全组的设备对设备通信,支持5G物联网的细粒度访问控制","authors":"Ruei-Hau Hsu, Hsiang-Shian Fan, Lu-Chin Wang","doi":"10.1109/DSC49826.2021.9346250","DOIUrl":null,"url":null,"abstract":"The fifth generation (5G) mobile networks provide intensive and low-latency communications, which are applicable to an emerging data sharing/exchange technology called Device-to-device (D2D) communication. For a safety D2D communication, is essential to ensure the legitimacy of devices and the secrecy of communications before it practiced. However, the basic security specification can only support secure one-to-one or one-to-many D2D communications with the assistance of security-related components,i.e., access and mobility management function (AMF), authentication server function (AuSF), and unified data management (UDM), in the 5G core network. It results that 5G core networks always have to handled the discovery of mobile devices. Since the components related to user authentication are involved, the device discovery procedures result in no privacy for users. To overcome the above issues, this work proposes a secure attribute-based access control mechanism to support secure device discovery with fine-grained access control based on edge computing model for D2D communications in 5G, called SGD2. SGD2 guarantees the privacy of D2D communications against the infrastructures of 5G mobile networks. Additionally, this work provides security analysis and empirical performance evaluation for the security and feasibility. To sum up, the proposed SGD2 is the practice of D2D communications with the features of fine-grained access control and privacy against mobile network operators in 5G for the applications of IoT.","PeriodicalId":184504,"journal":{"name":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"57 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SGD2: Secure Group-based Device-to-Device Communications with Fine-grained Access Control for IoT in 5G\",\"authors\":\"Ruei-Hau Hsu, Hsiang-Shian Fan, Lu-Chin Wang\",\"doi\":\"10.1109/DSC49826.2021.9346250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fifth generation (5G) mobile networks provide intensive and low-latency communications, which are applicable to an emerging data sharing/exchange technology called Device-to-device (D2D) communication. For a safety D2D communication, is essential to ensure the legitimacy of devices and the secrecy of communications before it practiced. However, the basic security specification can only support secure one-to-one or one-to-many D2D communications with the assistance of security-related components,i.e., access and mobility management function (AMF), authentication server function (AuSF), and unified data management (UDM), in the 5G core network. It results that 5G core networks always have to handled the discovery of mobile devices. Since the components related to user authentication are involved, the device discovery procedures result in no privacy for users. To overcome the above issues, this work proposes a secure attribute-based access control mechanism to support secure device discovery with fine-grained access control based on edge computing model for D2D communications in 5G, called SGD2. SGD2 guarantees the privacy of D2D communications against the infrastructures of 5G mobile networks. Additionally, this work provides security analysis and empirical performance evaluation for the security and feasibility. To sum up, the proposed SGD2 is the practice of D2D communications with the features of fine-grained access control and privacy against mobile network operators in 5G for the applications of IoT.\",\"PeriodicalId\":184504,\"journal\":{\"name\":\"2021 IEEE Conference on Dependable and Secure Computing (DSC)\",\"volume\":\"57 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Dependable and Secure Computing (DSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSC49826.2021.9346250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC49826.2021.9346250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SGD2: Secure Group-based Device-to-Device Communications with Fine-grained Access Control for IoT in 5G
The fifth generation (5G) mobile networks provide intensive and low-latency communications, which are applicable to an emerging data sharing/exchange technology called Device-to-device (D2D) communication. For a safety D2D communication, is essential to ensure the legitimacy of devices and the secrecy of communications before it practiced. However, the basic security specification can only support secure one-to-one or one-to-many D2D communications with the assistance of security-related components,i.e., access and mobility management function (AMF), authentication server function (AuSF), and unified data management (UDM), in the 5G core network. It results that 5G core networks always have to handled the discovery of mobile devices. Since the components related to user authentication are involved, the device discovery procedures result in no privacy for users. To overcome the above issues, this work proposes a secure attribute-based access control mechanism to support secure device discovery with fine-grained access control based on edge computing model for D2D communications in 5G, called SGD2. SGD2 guarantees the privacy of D2D communications against the infrastructures of 5G mobile networks. Additionally, this work provides security analysis and empirical performance evaluation for the security and feasibility. To sum up, the proposed SGD2 is the practice of D2D communications with the features of fine-grained access control and privacy against mobile network operators in 5G for the applications of IoT.