四元数值神经网络的Levenberg-Marquardt学习算法

Călin-Adrian Popa
{"title":"四元数值神经网络的Levenberg-Marquardt学习算法","authors":"Călin-Adrian Popa","doi":"10.1109/SYNASC.2016.050","DOIUrl":null,"url":null,"abstract":"In this paper, we present the deduction of the Levenberg-Marquardt algorithm for training quaternion-valued feedforward neural networks, using the framework of the HR calculus. Its performances in the real-and complex-valued cases lead to the idea of extending it to the quaternion domain, also. The proposed method is exemplified on time series prediction applications, showing a significant improvement over the quaternion gradient descent algorithm.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"75 2-3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Levenberg-Marquardt Learning Algorithm for Quaternion-Valued Neural Networks\",\"authors\":\"Călin-Adrian Popa\",\"doi\":\"10.1109/SYNASC.2016.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the deduction of the Levenberg-Marquardt algorithm for training quaternion-valued feedforward neural networks, using the framework of the HR calculus. Its performances in the real-and complex-valued cases lead to the idea of extending it to the quaternion domain, also. The proposed method is exemplified on time series prediction applications, showing a significant improvement over the quaternion gradient descent algorithm.\",\"PeriodicalId\":268635,\"journal\":{\"name\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"75 2-3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2016.050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了Levenberg-Marquardt算法的推导,用于训练四元数值前馈神经网络,使用HR微积分的框架。它在实值和复值情况下的性能也使其扩展到四元数域的想法。该方法在时间序列预测中的应用表明,该方法比四元数梯度下降算法有明显的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Levenberg-Marquardt Learning Algorithm for Quaternion-Valued Neural Networks
In this paper, we present the deduction of the Levenberg-Marquardt algorithm for training quaternion-valued feedforward neural networks, using the framework of the HR calculus. Its performances in the real-and complex-valued cases lead to the idea of extending it to the quaternion domain, also. The proposed method is exemplified on time series prediction applications, showing a significant improvement over the quaternion gradient descent algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信