未来无线传感器网络路由、定位和qos的机器学习技术

M. Sirajuddin
{"title":"未来无线传感器网络路由、定位和qos的机器学习技术","authors":"M. Sirajuddin","doi":"10.26483/ijarcs.v12i6.6788","DOIUrl":null,"url":null,"abstract":": WSNs plays a crucial role in adopting new generation techniques and their use in creating future-ready technologies. The key difficulties with Wireless Sensor Networks (WSNs) are energy-efficient routing, localization strategies and QoS, as these tiny sensor nodes rely solely on battery power to operate in hazardous situations. So there is a need to research and develop efficient, resilient communication techniques and localization mechanisms to address the issues of WSNs and keep the network operating for an extended period. As a result, low complexity machine learning models manage several difficult tasks such as routing, data aggregation, localization, and motion tracking to define system behavior. Machine learning approaches are thought to be useful for developing energy-efficient routing and localization strategies. Furthermore, machine learning techniques inspire various practical ways to optimize resource utilization and hence increase the lifespan of the sensor network. In this article, an effort has been made to present a broad overview of several machine learning approaches that may be utilized to address various challenges in WSNs, with specific emphasis on routing problems and localization strategies and QoS.","PeriodicalId":287911,"journal":{"name":"International Journal of Advanced Research in Computer Science","volume":"35 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MACHINE LEARNING TECHNIQUES FOR ROUTING, LOCALIZATION AND QOS FOR FUTURE WIRELESS SENSOR NETWORKS\",\"authors\":\"M. Sirajuddin\",\"doi\":\"10.26483/ijarcs.v12i6.6788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": WSNs plays a crucial role in adopting new generation techniques and their use in creating future-ready technologies. The key difficulties with Wireless Sensor Networks (WSNs) are energy-efficient routing, localization strategies and QoS, as these tiny sensor nodes rely solely on battery power to operate in hazardous situations. So there is a need to research and develop efficient, resilient communication techniques and localization mechanisms to address the issues of WSNs and keep the network operating for an extended period. As a result, low complexity machine learning models manage several difficult tasks such as routing, data aggregation, localization, and motion tracking to define system behavior. Machine learning approaches are thought to be useful for developing energy-efficient routing and localization strategies. Furthermore, machine learning techniques inspire various practical ways to optimize resource utilization and hence increase the lifespan of the sensor network. In this article, an effort has been made to present a broad overview of several machine learning approaches that may be utilized to address various challenges in WSNs, with specific emphasis on routing problems and localization strategies and QoS.\",\"PeriodicalId\":287911,\"journal\":{\"name\":\"International Journal of Advanced Research in Computer Science\",\"volume\":\"35 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26483/ijarcs.v12i6.6788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26483/ijarcs.v12i6.6788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络在采用新一代技术和创造面向未来的技术方面发挥着至关重要的作用。无线传感器网络(wsn)的主要困难是节能路由、定位策略和QoS,因为这些微小的传感器节点完全依赖电池供电在危险情况下运行。因此,有必要研究和开发高效、弹性的通信技术和本地化机制,以解决无线传感器网络的问题,并保持网络的长时间运行。因此,低复杂性的机器学习模型管理一些困难的任务,如路由、数据聚合、定位和运动跟踪,以定义系统行为。机器学习方法被认为对开发节能路由和定位策略很有用。此外,机器学习技术激发了各种实用的方法来优化资源利用,从而增加传感器网络的使用寿命。在本文中,我们对几种机器学习方法进行了广泛的概述,这些方法可用于解决wsn中的各种挑战,特别强调路由问题、本地化策略和QoS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MACHINE LEARNING TECHNIQUES FOR ROUTING, LOCALIZATION AND QOS FOR FUTURE WIRELESS SENSOR NETWORKS
: WSNs plays a crucial role in adopting new generation techniques and their use in creating future-ready technologies. The key difficulties with Wireless Sensor Networks (WSNs) are energy-efficient routing, localization strategies and QoS, as these tiny sensor nodes rely solely on battery power to operate in hazardous situations. So there is a need to research and develop efficient, resilient communication techniques and localization mechanisms to address the issues of WSNs and keep the network operating for an extended period. As a result, low complexity machine learning models manage several difficult tasks such as routing, data aggregation, localization, and motion tracking to define system behavior. Machine learning approaches are thought to be useful for developing energy-efficient routing and localization strategies. Furthermore, machine learning techniques inspire various practical ways to optimize resource utilization and hence increase the lifespan of the sensor network. In this article, an effort has been made to present a broad overview of several machine learning approaches that may be utilized to address various challenges in WSNs, with specific emphasis on routing problems and localization strategies and QoS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信