基于混合深度学习的剩余使用寿命估计方法

Khaled Akkad, D. He
{"title":"基于混合深度学习的剩余使用寿命估计方法","authors":"Khaled Akkad, D. He","doi":"10.1109/ICPHM.2019.8819435","DOIUrl":null,"url":null,"abstract":"One of the most important aspects of PHM is remaining useful life (RUL) estimation. This paper proposes a hybrid deep learning-based approach for RUL estimation. The hybrid method is developed using a combination of long short-term memory and convolutional neural networks. The effectiveness of the hybrid method is validated using three engine fleets from turbofan engines simulation datasets.","PeriodicalId":113460,"journal":{"name":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Hybrid Deep Learning Based Approach for Remaining Useful Life Estimation\",\"authors\":\"Khaled Akkad, D. He\",\"doi\":\"10.1109/ICPHM.2019.8819435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important aspects of PHM is remaining useful life (RUL) estimation. This paper proposes a hybrid deep learning-based approach for RUL estimation. The hybrid method is developed using a combination of long short-term memory and convolutional neural networks. The effectiveness of the hybrid method is validated using three engine fleets from turbofan engines simulation datasets.\",\"PeriodicalId\":113460,\"journal\":{\"name\":\"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2019.8819435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2019.8819435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

PHM最重要的方面之一是剩余使用寿命(RUL)估计。本文提出了一种基于混合深度学习的RUL估计方法。该方法将长短期记忆与卷积神经网络相结合。利用涡扇发动机仿真数据集验证了混合方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Deep Learning Based Approach for Remaining Useful Life Estimation
One of the most important aspects of PHM is remaining useful life (RUL) estimation. This paper proposes a hybrid deep learning-based approach for RUL estimation. The hybrid method is developed using a combination of long short-term memory and convolutional neural networks. The effectiveness of the hybrid method is validated using three engine fleets from turbofan engines simulation datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信