基于YOLOv3的复杂场景下海洋目标快速分类与检测

Tingchao Shi, Mingyong Liu, Yang Yang, Sainan Li, Peixin Wang, Yuxuan Huang
{"title":"基于YOLOv3的复杂场景下海洋目标快速分类与检测","authors":"Tingchao Shi, Mingyong Liu, Yang Yang, Sainan Li, Peixin Wang, Yuxuan Huang","doi":"10.1109/OCEANSE.2019.8867137","DOIUrl":null,"url":null,"abstract":"In order to meet the needs of fast detection and classification of different marine targets during intelligent unmanned surface vehicle (USV) operations, In this paper, I introduce a convolutional neural network based on one of the most effective object detection algorithms, named YOLOv3, to classify and detect images of different marine targets. Firstly, I showed the network structure of the algorithm in this paper. Then, I explained how I got the optimal anchor box parameter of the algorithm. Finally, I improved the activation function to make the algorithm more robust to noise. The final results show that the MAP of the detector in this paper is 91.83%,and we reach a detection rate of 58.3 fps by improving the YOLOV3 algorithm.","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fast Classification and Detection of Marine Targets in Complex Scenes with YOLOv3\",\"authors\":\"Tingchao Shi, Mingyong Liu, Yang Yang, Sainan Li, Peixin Wang, Yuxuan Huang\",\"doi\":\"10.1109/OCEANSE.2019.8867137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to meet the needs of fast detection and classification of different marine targets during intelligent unmanned surface vehicle (USV) operations, In this paper, I introduce a convolutional neural network based on one of the most effective object detection algorithms, named YOLOv3, to classify and detect images of different marine targets. Firstly, I showed the network structure of the algorithm in this paper. Then, I explained how I got the optimal anchor box parameter of the algorithm. Finally, I improved the activation function to make the algorithm more robust to noise. The final results show that the MAP of the detector in this paper is 91.83%,and we reach a detection rate of 58.3 fps by improving the YOLOV3 algorithm.\",\"PeriodicalId\":375793,\"journal\":{\"name\":\"OCEANS 2019 - Marseille\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2019 - Marseille\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSE.2019.8867137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了满足智能无人水面车辆(USV)作战过程中对不同海洋目标的快速检测和分类需求,本文基于目前最有效的目标检测算法之一YOLOv3,引入卷积神经网络对不同海洋目标图像进行分类和检测。首先,本文给出了算法的网络结构。然后,我解释了如何得到算法的最优锚盒参数。最后,我改进了激活函数,使算法对噪声具有更强的鲁棒性。最终结果表明,本文探测器的MAP为91.83%,通过改进YOLOV3算法达到58.3 fps的检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Classification and Detection of Marine Targets in Complex Scenes with YOLOv3
In order to meet the needs of fast detection and classification of different marine targets during intelligent unmanned surface vehicle (USV) operations, In this paper, I introduce a convolutional neural network based on one of the most effective object detection algorithms, named YOLOv3, to classify and detect images of different marine targets. Firstly, I showed the network structure of the algorithm in this paper. Then, I explained how I got the optimal anchor box parameter of the algorithm. Finally, I improved the activation function to make the algorithm more robust to noise. The final results show that the MAP of the detector in this paper is 91.83%,and we reach a detection rate of 58.3 fps by improving the YOLOV3 algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信