教学脉冲综合神经系统:一种心理生物学方法

T. Lehmann
{"title":"教学脉冲综合神经系统:一种心理生物学方法","authors":"T. Lehmann","doi":"10.1109/MNNFS.1996.493790","DOIUrl":null,"url":null,"abstract":"In this paper, we present a continuous time version of a differential Hebbian learning algorithm for pulsed neural systems with non-linear synapses. We argue that future analogue integrated implementations of artificial neural networks with on-chip learning must take as a starting point the basic properties of the technology. In particular asynchronous and inherently offset free, simple circuit structures must be used. We argue that unsupervised type learning schemes are most natural for analogue implementations and we seek inspiration from psychobiology to derive a learning scheme suitable for adaptive pulsed VLSI neural networks. We present simulations on this new learning scheme and show that it behaves as the original drive-reinforcement algorithm while being compatible with the technology. Finally, we show how the important weight change circuit is implemented in CMOS.","PeriodicalId":151891,"journal":{"name":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Teaching pulsed integrated neural systems: a psychobiological approach\",\"authors\":\"T. Lehmann\",\"doi\":\"10.1109/MNNFS.1996.493790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a continuous time version of a differential Hebbian learning algorithm for pulsed neural systems with non-linear synapses. We argue that future analogue integrated implementations of artificial neural networks with on-chip learning must take as a starting point the basic properties of the technology. In particular asynchronous and inherently offset free, simple circuit structures must be used. We argue that unsupervised type learning schemes are most natural for analogue implementations and we seek inspiration from psychobiology to derive a learning scheme suitable for adaptive pulsed VLSI neural networks. We present simulations on this new learning scheme and show that it behaves as the original drive-reinforcement algorithm while being compatible with the technology. Finally, we show how the important weight change circuit is implemented in CMOS.\",\"PeriodicalId\":151891,\"journal\":{\"name\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNNFS.1996.493790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNNFS.1996.493790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一个连续时间版本的微分Hebbian学习算法,用于具有非线性突触的脉冲神经系统。我们认为,未来具有片上学习的人工神经网络模拟集成实现必须以该技术的基本特性为起点。特别是异步和固有的无偏移,必须使用简单的电路结构。我们认为无监督型学习方案对于模拟实现是最自然的,我们从心理生物学中寻求灵感,以推导出适合自适应脉冲VLSI神经网络的学习方案。我们对这种新的学习方案进行了仿真,结果表明它与原始的驱动强化算法具有相同的性能,同时又与该技术兼容。最后,我们展示了如何在CMOS中实现重要的重量变化电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Teaching pulsed integrated neural systems: a psychobiological approach
In this paper, we present a continuous time version of a differential Hebbian learning algorithm for pulsed neural systems with non-linear synapses. We argue that future analogue integrated implementations of artificial neural networks with on-chip learning must take as a starting point the basic properties of the technology. In particular asynchronous and inherently offset free, simple circuit structures must be used. We argue that unsupervised type learning schemes are most natural for analogue implementations and we seek inspiration from psychobiology to derive a learning scheme suitable for adaptive pulsed VLSI neural networks. We present simulations on this new learning scheme and show that it behaves as the original drive-reinforcement algorithm while being compatible with the technology. Finally, we show how the important weight change circuit is implemented in CMOS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信