{"title":"应用累积周期电压扫描法控制BaTiO3薄膜泄漏电流的研究","authors":"S. Maejima, M. Uchida, M. Noda","doi":"10.1109/ISAF.2018.8463232","DOIUrl":null,"url":null,"abstract":"We found a new phenomenon that shows a large change in leakage current through BaTiO3(BTO) film with the maximum ratio of 107 to 109 observed in this work by changing cumulative cycle of voltage scan applied on the film capacitor. These leakage phenomena are thought to depend on several factors such as BTO film thickness, concentration of $V_{0}^{+}$, bias voltage, its sweep rate and so on, because trapping/detrapping of carrier electron into/from oxygen vacancy would be a competition dependent on their rates and concentrations. These results imply that the leakage current can be controlled by some sequences or protocols of applied voltage scan, leading to use for ReRAM or neuromorphic applications.","PeriodicalId":231071,"journal":{"name":"2018 IEEE ISAF-FMA-AMF-AMEC-PFM Joint Conference (IFAAP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of Leakage Current through BaTiO3 Film by Cumulative Cycle of Applied Voltage Scanning for ReRAM or Neuromorphic Application\",\"authors\":\"S. Maejima, M. Uchida, M. Noda\",\"doi\":\"10.1109/ISAF.2018.8463232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We found a new phenomenon that shows a large change in leakage current through BaTiO3(BTO) film with the maximum ratio of 107 to 109 observed in this work by changing cumulative cycle of voltage scan applied on the film capacitor. These leakage phenomena are thought to depend on several factors such as BTO film thickness, concentration of $V_{0}^{+}$, bias voltage, its sweep rate and so on, because trapping/detrapping of carrier electron into/from oxygen vacancy would be a competition dependent on their rates and concentrations. These results imply that the leakage current can be controlled by some sequences or protocols of applied voltage scan, leading to use for ReRAM or neuromorphic applications.\",\"PeriodicalId\":231071,\"journal\":{\"name\":\"2018 IEEE ISAF-FMA-AMF-AMEC-PFM Joint Conference (IFAAP)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE ISAF-FMA-AMF-AMEC-PFM Joint Conference (IFAAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAF.2018.8463232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE ISAF-FMA-AMF-AMEC-PFM Joint Conference (IFAAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAF.2018.8463232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control of Leakage Current through BaTiO3 Film by Cumulative Cycle of Applied Voltage Scanning for ReRAM or Neuromorphic Application
We found a new phenomenon that shows a large change in leakage current through BaTiO3(BTO) film with the maximum ratio of 107 to 109 observed in this work by changing cumulative cycle of voltage scan applied on the film capacitor. These leakage phenomena are thought to depend on several factors such as BTO film thickness, concentration of $V_{0}^{+}$, bias voltage, its sweep rate and so on, because trapping/detrapping of carrier electron into/from oxygen vacancy would be a competition dependent on their rates and concentrations. These results imply that the leakage current can be controlled by some sequences or protocols of applied voltage scan, leading to use for ReRAM or neuromorphic applications.