{"title":"Hamband: RDMA复制的数据类型","authors":"F. Houshmand, Javad Saberlatibari, M. Lesani","doi":"10.1145/3519939.3523426","DOIUrl":null,"url":null,"abstract":"Data centers are increasingly equipped with RDMAs. These network interfaces mark the advent of a new distributed system model where a node can directly access the remote memory of another. They have enabled microsecond-scale replicated services. The underlying replication protocols of these systems execute all operations under strong consistency. However, strong consistency can hinder response time and availability, and recent replication models have turned to a hybrid of strong and relaxed consistency. This paper presents RDMA well-coordinated replicated data types, the first hybrid replicated data types for the RDMA network model. It presents a novel operational semantics for these data types that considers three distinct categories of methods and captures their required coordination, and formally proves that they preserve convergence and integrity. It implements these semantics in a system called Hamband that leverages direct remote accesses to efficiently implement the required coordination protocols. The empirical evaluation shows that Hamband outperforms the throughput of existing message-based and strongly consistent implementations by more than 17x and 2.7x respectively.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamband: RDMA replicated data types\",\"authors\":\"F. Houshmand, Javad Saberlatibari, M. Lesani\",\"doi\":\"10.1145/3519939.3523426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data centers are increasingly equipped with RDMAs. These network interfaces mark the advent of a new distributed system model where a node can directly access the remote memory of another. They have enabled microsecond-scale replicated services. The underlying replication protocols of these systems execute all operations under strong consistency. However, strong consistency can hinder response time and availability, and recent replication models have turned to a hybrid of strong and relaxed consistency. This paper presents RDMA well-coordinated replicated data types, the first hybrid replicated data types for the RDMA network model. It presents a novel operational semantics for these data types that considers three distinct categories of methods and captures their required coordination, and formally proves that they preserve convergence and integrity. It implements these semantics in a system called Hamband that leverages direct remote accesses to efficiently implement the required coordination protocols. The empirical evaluation shows that Hamband outperforms the throughput of existing message-based and strongly consistent implementations by more than 17x and 2.7x respectively.\",\"PeriodicalId\":140942,\"journal\":{\"name\":\"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3519939.3523426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3519939.3523426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data centers are increasingly equipped with RDMAs. These network interfaces mark the advent of a new distributed system model where a node can directly access the remote memory of another. They have enabled microsecond-scale replicated services. The underlying replication protocols of these systems execute all operations under strong consistency. However, strong consistency can hinder response time and availability, and recent replication models have turned to a hybrid of strong and relaxed consistency. This paper presents RDMA well-coordinated replicated data types, the first hybrid replicated data types for the RDMA network model. It presents a novel operational semantics for these data types that considers three distinct categories of methods and captures their required coordination, and formally proves that they preserve convergence and integrity. It implements these semantics in a system called Hamband that leverages direct remote accesses to efficiently implement the required coordination protocols. The empirical evaluation shows that Hamband outperforms the throughput of existing message-based and strongly consistent implementations by more than 17x and 2.7x respectively.