基于支持向量回归和粒子群优化算法的入侵检测定量分析

WenJie Tian, Jicheng Liu
{"title":"基于支持向量回归和粒子群优化算法的入侵检测定量分析","authors":"WenJie Tian, Jicheng Liu","doi":"10.1109/WNIS.2009.79","DOIUrl":null,"url":null,"abstract":"Because the network intrusion behaviors are characterized with uncertainty, complexity and diversity, a new method based on support vector regression (SVR) and particle swarm optimization algorithm (PSOA) is presented and used for pattern analysis of intrusion detection in this paper. The novel structure model has higher accuracy and faster convergence speed. We construct the network structure, and give the algorithm flow. We discussed and analyzed the impact factor of intrusion behaviors. With the ability of strong self-learning and faster convergence, this intrusion detection method can detect various intrusion behaviors rapidly and effectively by learning the typical intrusion characteristic information. We use rough set to reduce dimension. We apply this technique on KDD99 data set and get satisfactory results. The experimental result shows that this intrusion detection method is feasible and effective.","PeriodicalId":280001,"journal":{"name":"2009 International Conference on Wireless Networks and Information Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Intrusion Detection Quantitative Analysis with Support Vector Regression and Particle Swarm Optimization Algorithm\",\"authors\":\"WenJie Tian, Jicheng Liu\",\"doi\":\"10.1109/WNIS.2009.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because the network intrusion behaviors are characterized with uncertainty, complexity and diversity, a new method based on support vector regression (SVR) and particle swarm optimization algorithm (PSOA) is presented and used for pattern analysis of intrusion detection in this paper. The novel structure model has higher accuracy and faster convergence speed. We construct the network structure, and give the algorithm flow. We discussed and analyzed the impact factor of intrusion behaviors. With the ability of strong self-learning and faster convergence, this intrusion detection method can detect various intrusion behaviors rapidly and effectively by learning the typical intrusion characteristic information. We use rough set to reduce dimension. We apply this technique on KDD99 data set and get satisfactory results. The experimental result shows that this intrusion detection method is feasible and effective.\",\"PeriodicalId\":280001,\"journal\":{\"name\":\"2009 International Conference on Wireless Networks and Information Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wireless Networks and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNIS.2009.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wireless Networks and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNIS.2009.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

针对网络入侵行为具有不确定性、复杂性和多样性的特点,提出了一种基于支持向量回归(SVR)和粒子群优化算法(PSOA)的入侵检测模式分析方法。该模型具有精度高、收敛速度快的特点。构造了网络结构,给出了算法流程。对入侵行为的影响因素进行了讨论和分析。该方法通过学习典型的入侵特征信息,能够快速有效地检测出各种入侵行为,具有较强的自学习能力和较快的收敛速度。我们使用粗糙集进行降维。将该技术应用于KDD99数据集,取得了满意的结果。实验结果表明,该入侵检测方法是可行和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrusion Detection Quantitative Analysis with Support Vector Regression and Particle Swarm Optimization Algorithm
Because the network intrusion behaviors are characterized with uncertainty, complexity and diversity, a new method based on support vector regression (SVR) and particle swarm optimization algorithm (PSOA) is presented and used for pattern analysis of intrusion detection in this paper. The novel structure model has higher accuracy and faster convergence speed. We construct the network structure, and give the algorithm flow. We discussed and analyzed the impact factor of intrusion behaviors. With the ability of strong self-learning and faster convergence, this intrusion detection method can detect various intrusion behaviors rapidly and effectively by learning the typical intrusion characteristic information. We use rough set to reduce dimension. We apply this technique on KDD99 data set and get satisfactory results. The experimental result shows that this intrusion detection method is feasible and effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信