超硬Ti-C-N等离子体膜在氮气气氛中的沉积

D. Gerasimov, A. Sivkov
{"title":"超硬Ti-C-N等离子体膜在氮气气氛中的沉积","authors":"D. Gerasimov, A. Sivkov","doi":"10.30791/0015-3214-2020-5-44-48","DOIUrl":null,"url":null,"abstract":"The possibility of obtaining a superhard plasma coating based on titanium, nitrogen and carbon on a metal substrate in a nitrogen atmosphere is shown. The coatings were deposited in one short-term accelerator operation cycle under the action of a hyperspeed jet of electroerosive Ti-containing plasma on the substrate surface. It has been shown by SEM and XRD that nanostructured layers of titanium nitride and titanium carbonitride are formed, providing a high hardness of the coating. Plasma coatings deposited in a nitrogen atmosphere have a higher hardness (19.6 GPa) than coatings deposited in air (16.2 GPa), which is due to a higher content of nitride crystalline phases in the coating material. XRD data showed that the coherent-scattering region of crystalline phases in coatings deposited in an atmosphere of air and in a nitrogen atmosphere is ~10-40 nm, which confirms the nanostructuring of all crystalline phases presented in the coating.","PeriodicalId":366423,"journal":{"name":"Physics and Chemistry of Materials Treatment","volume":"55 94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deposition of superhard Ti-C-N plasma coatings in nitrogen atmosphere\",\"authors\":\"D. Gerasimov, A. Sivkov\",\"doi\":\"10.30791/0015-3214-2020-5-44-48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possibility of obtaining a superhard plasma coating based on titanium, nitrogen and carbon on a metal substrate in a nitrogen atmosphere is shown. The coatings were deposited in one short-term accelerator operation cycle under the action of a hyperspeed jet of electroerosive Ti-containing plasma on the substrate surface. It has been shown by SEM and XRD that nanostructured layers of titanium nitride and titanium carbonitride are formed, providing a high hardness of the coating. Plasma coatings deposited in a nitrogen atmosphere have a higher hardness (19.6 GPa) than coatings deposited in air (16.2 GPa), which is due to a higher content of nitride crystalline phases in the coating material. XRD data showed that the coherent-scattering region of crystalline phases in coatings deposited in an atmosphere of air and in a nitrogen atmosphere is ~10-40 nm, which confirms the nanostructuring of all crystalline phases presented in the coating.\",\"PeriodicalId\":366423,\"journal\":{\"name\":\"Physics and Chemistry of Materials Treatment\",\"volume\":\"55 94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Materials Treatment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30791/0015-3214-2020-5-44-48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Materials Treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30791/0015-3214-2020-5-44-48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

展示了在氮气气氛下在金属衬底上获得钛、氮和碳基超硬等离子体涂层的可能性。在高速电蚀含钛等离子体射流的作用下,在一个短期的加速器操作周期内沉积镀层。SEM和XRD分析表明,涂层形成了纳米结构的氮化钛和碳氮化钛层,具有较高的硬度。在氮气气氛下沉积的等离子体涂层的硬度(19.6 GPa)高于在空气中沉积的涂层(16.2 GPa),这是由于涂层材料中氮化晶相含量较高。XRD数据表明,在空气气氛和氮气气氛中沉积的涂层中,晶相的相干散射区域在~10 ~ 40 nm,证实了涂层中所有晶相的纳米结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deposition of superhard Ti-C-N plasma coatings in nitrogen atmosphere
The possibility of obtaining a superhard plasma coating based on titanium, nitrogen and carbon on a metal substrate in a nitrogen atmosphere is shown. The coatings were deposited in one short-term accelerator operation cycle under the action of a hyperspeed jet of electroerosive Ti-containing plasma on the substrate surface. It has been shown by SEM and XRD that nanostructured layers of titanium nitride and titanium carbonitride are formed, providing a high hardness of the coating. Plasma coatings deposited in a nitrogen atmosphere have a higher hardness (19.6 GPa) than coatings deposited in air (16.2 GPa), which is due to a higher content of nitride crystalline phases in the coating material. XRD data showed that the coherent-scattering region of crystalline phases in coatings deposited in an atmosphere of air and in a nitrogen atmosphere is ~10-40 nm, which confirms the nanostructuring of all crystalline phases presented in the coating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信