基于极值理论的流级尾延迟估计与验证

Max Helm, Florian Wiedner, G. Carle
{"title":"基于极值理论的流级尾延迟估计与验证","authors":"Max Helm, Florian Wiedner, G. Carle","doi":"10.23919/CNSM55787.2022.9964525","DOIUrl":null,"url":null,"abstract":"Modeling extreme latencies in communication net-works can contribute information to network planning and flow admission under service level agreements. Extreme Value Theory is such an approach that utilizes real-world measurement data. It is often applied without verifying the resulting model predictions on larger datasets. Here we show that such models can provide accurate predictions over larger datasets while being applied to 100 random network topologies and configurations. We found that applying derived models with a bounded tail to a twentyfold time period results in a prediction accuracy of 75% for extreme latency exceedances. Furthermore, we show that tail latency quantiles can be predicted on a flow level with median absolute percentage errors ranging from 0.7% to 16.8%. Therefore, we consider this approach to be useful for dimensioning networks under latency-constrained service level agreements.","PeriodicalId":232521,"journal":{"name":"2022 18th International Conference on Network and Service Management (CNSM)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flow-level Tail Latency Estimation and Verification based on Extreme Value Theory\",\"authors\":\"Max Helm, Florian Wiedner, G. Carle\",\"doi\":\"10.23919/CNSM55787.2022.9964525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling extreme latencies in communication net-works can contribute information to network planning and flow admission under service level agreements. Extreme Value Theory is such an approach that utilizes real-world measurement data. It is often applied without verifying the resulting model predictions on larger datasets. Here we show that such models can provide accurate predictions over larger datasets while being applied to 100 random network topologies and configurations. We found that applying derived models with a bounded tail to a twentyfold time period results in a prediction accuracy of 75% for extreme latency exceedances. Furthermore, we show that tail latency quantiles can be predicted on a flow level with median absolute percentage errors ranging from 0.7% to 16.8%. Therefore, we consider this approach to be useful for dimensioning networks under latency-constrained service level agreements.\",\"PeriodicalId\":232521,\"journal\":{\"name\":\"2022 18th International Conference on Network and Service Management (CNSM)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 18th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM55787.2022.9964525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM55787.2022.9964525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对通信网络中的极端延迟进行建模,可以为服务水平协议下的网络规划和流量准入提供信息。极值理论就是这样一种利用真实世界测量数据的方法。它通常没有在更大的数据集上验证模型预测结果。在这里,我们展示了这样的模型可以在更大的数据集上提供准确的预测,同时应用于100个随机网络拓扑和配置。我们发现,将有界尾的衍生模型应用于20倍的时间段,对于极端延迟超出的预测精度为75%。此外,我们表明,尾部延迟分位数可以在流量水平上预测,中位数绝对百分比误差范围为0.7%至16.8%。因此,我们认为这种方法对于延迟受限的服务水平协议下的网络维化是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow-level Tail Latency Estimation and Verification based on Extreme Value Theory
Modeling extreme latencies in communication net-works can contribute information to network planning and flow admission under service level agreements. Extreme Value Theory is such an approach that utilizes real-world measurement data. It is often applied without verifying the resulting model predictions on larger datasets. Here we show that such models can provide accurate predictions over larger datasets while being applied to 100 random network topologies and configurations. We found that applying derived models with a bounded tail to a twentyfold time period results in a prediction accuracy of 75% for extreme latency exceedances. Furthermore, we show that tail latency quantiles can be predicted on a flow level with median absolute percentage errors ranging from 0.7% to 16.8%. Therefore, we consider this approach to be useful for dimensioning networks under latency-constrained service level agreements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信