基于Transformer双支路门控结构的蒙汉神经机器翻译模型

Genmao Zhang, Yonghong Tian, Jia Hao, Junjin Zhang
{"title":"基于Transformer双支路门控结构的蒙汉神经机器翻译模型","authors":"Genmao Zhang, Yonghong Tian, Jia Hao, Junjin Zhang","doi":"10.1109/IIP57348.2022.00085","DOIUrl":null,"url":null,"abstract":"To design a new two-branch gating structure for the existence of Transformer structure, by dividing the attention mechanism into two pieces, one part adopts the attention mechanism for global information capture and the other part adopts dynamic convolution for local information capture, and the captured two-branch is fused with features by way of gating mechanism to replace the attention mechanism and feedforward neural network, which makes the model fewer parameters and higher ability of capturing information. The experimental results show that our BLEU4 value is improved by 3. 07 compared to the Transformer structure.","PeriodicalId":412907,"journal":{"name":"2022 4th International Conference on Intelligent Information Processing (IIP)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mongolian-Chinese neural machine translation model based on Transformer’s two-branch gating structure\",\"authors\":\"Genmao Zhang, Yonghong Tian, Jia Hao, Junjin Zhang\",\"doi\":\"10.1109/IIP57348.2022.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To design a new two-branch gating structure for the existence of Transformer structure, by dividing the attention mechanism into two pieces, one part adopts the attention mechanism for global information capture and the other part adopts dynamic convolution for local information capture, and the captured two-branch is fused with features by way of gating mechanism to replace the attention mechanism and feedforward neural network, which makes the model fewer parameters and higher ability of capturing information. The experimental results show that our BLEU4 value is improved by 3. 07 compared to the Transformer structure.\",\"PeriodicalId\":412907,\"journal\":{\"name\":\"2022 4th International Conference on Intelligent Information Processing (IIP)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Intelligent Information Processing (IIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIP57348.2022.00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Intelligent Information Processing (IIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIP57348.2022.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对Transformer结构的存在,设计了一种新的双分支门控结构,将注意力机制分为两部分,一部分采用注意力机制进行全局信息捕获,另一部分采用动态卷积进行局部信息捕获,捕获的两分支通过门控机制与特征融合,取代注意力机制和前馈神经网络。这使得模型参数更少,获取信息的能力更高。实验结果表明,我们的BLEU4值提高了3。07与变压器结构相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mongolian-Chinese neural machine translation model based on Transformer’s two-branch gating structure
To design a new two-branch gating structure for the existence of Transformer structure, by dividing the attention mechanism into two pieces, one part adopts the attention mechanism for global information capture and the other part adopts dynamic convolution for local information capture, and the captured two-branch is fused with features by way of gating mechanism to replace the attention mechanism and feedforward neural network, which makes the model fewer parameters and higher ability of capturing information. The experimental results show that our BLEU4 value is improved by 3. 07 compared to the Transformer structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信