{"title":"基于机器学习的可执行文件恶意软件检测实验分析","authors":"Anurag Sharma, Suman Mohanty, Md. Ruhul Islam","doi":"10.1109/ICSCC51209.2021.9528122","DOIUrl":null,"url":null,"abstract":"In the recent time due to advancement of technology, Malware and its clan have continued to advance and become more diverse. Malware otherwise Malicious Software consists of Virus, Trojan horse, Adware, Spyware etc. This said software leads to extrusion of data (Spyware), continuously flow of Ads (Adware), modifying or damaging the system files (Virus), or access of personal information (Trojan horse). Some of the major factors driving the growth of these attacks are due to poorly secured devices and the ease of availability of tools in the Internet with which anyone can attack any system. The attackers or the developers of Malware usually lean towards blending of malware into the executable file, which makes it hard to detect the presence of malware in executable files. In this paper we have done experimental study on various algorithms of Machine Learning for detecting the presence of Malware in executable files. After testing Naïve Bayes, KNN and SVM, we found out that SVM was the most suited algorithm and had the accuracy of 94%. We then created a web application where the user could upload executable file and test the authenticity of the said executable file if it is a Malware file or a benign file.","PeriodicalId":382982,"journal":{"name":"2021 8th International Conference on Smart Computing and Communications (ICSCC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Experimental Analysis on Malware Detection in Executable Files using Machine Learning\",\"authors\":\"Anurag Sharma, Suman Mohanty, Md. Ruhul Islam\",\"doi\":\"10.1109/ICSCC51209.2021.9528122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the recent time due to advancement of technology, Malware and its clan have continued to advance and become more diverse. Malware otherwise Malicious Software consists of Virus, Trojan horse, Adware, Spyware etc. This said software leads to extrusion of data (Spyware), continuously flow of Ads (Adware), modifying or damaging the system files (Virus), or access of personal information (Trojan horse). Some of the major factors driving the growth of these attacks are due to poorly secured devices and the ease of availability of tools in the Internet with which anyone can attack any system. The attackers or the developers of Malware usually lean towards blending of malware into the executable file, which makes it hard to detect the presence of malware in executable files. In this paper we have done experimental study on various algorithms of Machine Learning for detecting the presence of Malware in executable files. After testing Naïve Bayes, KNN and SVM, we found out that SVM was the most suited algorithm and had the accuracy of 94%. We then created a web application where the user could upload executable file and test the authenticity of the said executable file if it is a Malware file or a benign file.\",\"PeriodicalId\":382982,\"journal\":{\"name\":\"2021 8th International Conference on Smart Computing and Communications (ICSCC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Smart Computing and Communications (ICSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCC51209.2021.9528122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Smart Computing and Communications (ICSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCC51209.2021.9528122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Experimental Analysis on Malware Detection in Executable Files using Machine Learning
In the recent time due to advancement of technology, Malware and its clan have continued to advance and become more diverse. Malware otherwise Malicious Software consists of Virus, Trojan horse, Adware, Spyware etc. This said software leads to extrusion of data (Spyware), continuously flow of Ads (Adware), modifying or damaging the system files (Virus), or access of personal information (Trojan horse). Some of the major factors driving the growth of these attacks are due to poorly secured devices and the ease of availability of tools in the Internet with which anyone can attack any system. The attackers or the developers of Malware usually lean towards blending of malware into the executable file, which makes it hard to detect the presence of malware in executable files. In this paper we have done experimental study on various algorithms of Machine Learning for detecting the presence of Malware in executable files. After testing Naïve Bayes, KNN and SVM, we found out that SVM was the most suited algorithm and had the accuracy of 94%. We then created a web application where the user could upload executable file and test the authenticity of the said executable file if it is a Malware file or a benign file.