Sirinda Palahan, Domagoj Babic, Swarat Chaudhuri, Daniel Kifer
{"title":"统计显著恶意软件行为的提取","authors":"Sirinda Palahan, Domagoj Babic, Swarat Chaudhuri, Daniel Kifer","doi":"10.1145/2523649.2523659","DOIUrl":null,"url":null,"abstract":"Traditionally, analysis of malicious software is only a semi-automated process, often requiring a skilled human analyst. As new malware appears at an increasingly alarming rate --- now over 100 thousand new variants each day --- there is a need for automated techniques for identifying suspicious behavior in programs. In this paper, we propose a method for extracting statistically significant malicious behaviors from a system call dependency graph (obtained by running a binary executable in a sandbox). Our approach is based on a new method for measuring the statistical significance of subgraphs. Given a training set of graphs from two classes (e.g., goodware and malware system call dependency graphs), our method can assign p-values to subgraphs of new graph instances even if those subgraphs have not appeared before in the training data (thus possibly capturing new behaviors or disguised versions of existing behaviors).","PeriodicalId":127404,"journal":{"name":"Proceedings of the 29th Annual Computer Security Applications Conference","volume":"119 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Extraction of statistically significant malware behaviors\",\"authors\":\"Sirinda Palahan, Domagoj Babic, Swarat Chaudhuri, Daniel Kifer\",\"doi\":\"10.1145/2523649.2523659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, analysis of malicious software is only a semi-automated process, often requiring a skilled human analyst. As new malware appears at an increasingly alarming rate --- now over 100 thousand new variants each day --- there is a need for automated techniques for identifying suspicious behavior in programs. In this paper, we propose a method for extracting statistically significant malicious behaviors from a system call dependency graph (obtained by running a binary executable in a sandbox). Our approach is based on a new method for measuring the statistical significance of subgraphs. Given a training set of graphs from two classes (e.g., goodware and malware system call dependency graphs), our method can assign p-values to subgraphs of new graph instances even if those subgraphs have not appeared before in the training data (thus possibly capturing new behaviors or disguised versions of existing behaviors).\",\"PeriodicalId\":127404,\"journal\":{\"name\":\"Proceedings of the 29th Annual Computer Security Applications Conference\",\"volume\":\"119 14\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th Annual Computer Security Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2523649.2523659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2523649.2523659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extraction of statistically significant malware behaviors
Traditionally, analysis of malicious software is only a semi-automated process, often requiring a skilled human analyst. As new malware appears at an increasingly alarming rate --- now over 100 thousand new variants each day --- there is a need for automated techniques for identifying suspicious behavior in programs. In this paper, we propose a method for extracting statistically significant malicious behaviors from a system call dependency graph (obtained by running a binary executable in a sandbox). Our approach is based on a new method for measuring the statistical significance of subgraphs. Given a training set of graphs from two classes (e.g., goodware and malware system call dependency graphs), our method can assign p-values to subgraphs of new graph instances even if those subgraphs have not appeared before in the training data (thus possibly capturing new behaviors or disguised versions of existing behaviors).