使用击键动力学的身份验证系统

F. Zareen, C. Matta, Akshay Arora, Sarmod Singh, S. Jabin
{"title":"使用击键动力学的身份验证系统","authors":"F. Zareen, C. Matta, Akshay Arora, Sarmod Singh, S. Jabin","doi":"10.1504/IJBM.2018.10011201","DOIUrl":null,"url":null,"abstract":"There are various biometrics-based methods for user authentication. However, the best authentication method can be based on physiological/behavioural biometrics as capturing physiological biometrics may require use of special devices and that may not be available with many users. Keystroke dynamics is a simplified and easily achievable user authentication method when every user is available with a laptop or a personal computer. This paper presents a keystroke dynamics-based authentication system using Bayesian regularised feed-forward neural network. In order to train the model, a database is captured for recording keystroke dynamics of 20 users in four sessions each with 50 samples. Experimental results demonstrate that the Bayesian regularised neural network models provide the best results and are most suitable for this purpose. We are able to achieve an equal error rate of 0.9% which is better than the methods used in the existing literature for plain keystroke dynamics. We have given a comparative analysis of the performance of proposed system with existing methods.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An authentication system using keystroke dynamics\",\"authors\":\"F. Zareen, C. Matta, Akshay Arora, Sarmod Singh, S. Jabin\",\"doi\":\"10.1504/IJBM.2018.10011201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are various biometrics-based methods for user authentication. However, the best authentication method can be based on physiological/behavioural biometrics as capturing physiological biometrics may require use of special devices and that may not be available with many users. Keystroke dynamics is a simplified and easily achievable user authentication method when every user is available with a laptop or a personal computer. This paper presents a keystroke dynamics-based authentication system using Bayesian regularised feed-forward neural network. In order to train the model, a database is captured for recording keystroke dynamics of 20 users in four sessions each with 50 samples. Experimental results demonstrate that the Bayesian regularised neural network models provide the best results and are most suitable for this purpose. We are able to achieve an equal error rate of 0.9% which is better than the methods used in the existing literature for plain keystroke dynamics. We have given a comparative analysis of the performance of proposed system with existing methods.\",\"PeriodicalId\":262486,\"journal\":{\"name\":\"Int. J. Biom.\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Biom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBM.2018.10011201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBM.2018.10011201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有各种基于生物特征的用户身份验证方法。然而,最好的认证方法可以基于生理/行为生物特征,因为获取生理生物特征可能需要使用特殊设备,而许多用户可能无法使用。当每个用户都可以使用笔记本电脑或个人计算机时,击键动力学是一种简化且易于实现的用户身份验证方法。提出了一种基于贝叶斯正则前馈神经网络的按键动态认证系统。为了训练模型,捕获了一个数据库,用于记录20个用户在四个会话中的击键动态,每个会话有50个样本。实验结果表明,贝叶斯正则化神经网络模型提供了最好的结果,最适合于这一目的。我们能够实现0.9%的错误率,这比现有文献中使用的纯击键动力学方法要好。我们对所提出的系统与现有方法的性能进行了比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An authentication system using keystroke dynamics
There are various biometrics-based methods for user authentication. However, the best authentication method can be based on physiological/behavioural biometrics as capturing physiological biometrics may require use of special devices and that may not be available with many users. Keystroke dynamics is a simplified and easily achievable user authentication method when every user is available with a laptop or a personal computer. This paper presents a keystroke dynamics-based authentication system using Bayesian regularised feed-forward neural network. In order to train the model, a database is captured for recording keystroke dynamics of 20 users in four sessions each with 50 samples. Experimental results demonstrate that the Bayesian regularised neural network models provide the best results and are most suitable for this purpose. We are able to achieve an equal error rate of 0.9% which is better than the methods used in the existing literature for plain keystroke dynamics. We have given a comparative analysis of the performance of proposed system with existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信