一种GPU周期共享自动化任务粒度估计方法

Keishi Tsukada, Fumihiko Ino
{"title":"一种GPU周期共享自动化任务粒度估计方法","authors":"Keishi Tsukada, Fumihiko Ino","doi":"10.1145/3301326.3301386","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for estimating task granularity to reduce guest's effort in graphics processing unit (GPU) cycle sharing systems. A cycle sharing system should maximize both the frame rate for resource donators (i.e., hosts) and the acceleration effect for scientific job submitters (i.e., guests). This can be realized by selecting the appropriate granularity for guest tasks. However, a previous cooperative multitasking method requires manual interactions to find the appropriate task granularity. To avoid such interactions, the proposed method automatically estimates the appropriate granularity by measuring the length of idle periods on the host. We show how this measurement can be realized on donated resources, where the host program cannot be instrumented due to the lack of code availability. In experiments, the proposed method automatically estimated the appropriate task granularity, which not only maintained the frame rate for an image filter (i.e., host task) but also maximized the performance of matrix multiplication (i.e., guest task).","PeriodicalId":294040,"journal":{"name":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Estimating Task Granularity for Automating GPU Cycle Sharing\",\"authors\":\"Keishi Tsukada, Fumihiko Ino\",\"doi\":\"10.1145/3301326.3301386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method for estimating task granularity to reduce guest's effort in graphics processing unit (GPU) cycle sharing systems. A cycle sharing system should maximize both the frame rate for resource donators (i.e., hosts) and the acceleration effect for scientific job submitters (i.e., guests). This can be realized by selecting the appropriate granularity for guest tasks. However, a previous cooperative multitasking method requires manual interactions to find the appropriate task granularity. To avoid such interactions, the proposed method automatically estimates the appropriate granularity by measuring the length of idle periods on the host. We show how this measurement can be realized on donated resources, where the host program cannot be instrumented due to the lack of code availability. In experiments, the proposed method automatically estimated the appropriate task granularity, which not only maintained the frame rate for an image filter (i.e., host task) but also maximized the performance of matrix multiplication (i.e., guest task).\",\"PeriodicalId\":294040,\"journal\":{\"name\":\"Proceedings of the 2018 VII International Conference on Network, Communication and Computing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 VII International Conference on Network, Communication and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3301326.3301386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301326.3301386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种估算任务粒度的方法,以减少图形处理单元(GPU)周期共享系统中客户机的工作量。循环共享系统应该最大化资源供给者(即主机)的帧速率和科学作业提交者(即客人)的加速效应。这可以通过为来宾任务选择适当的粒度来实现。然而,以前的协作多任务方法需要手动交互来找到合适的任务粒度。为了避免这种交互,提出的方法通过测量主机上空闲时间的长度来自动估计适当的粒度。我们将展示如何在捐赠的资源上实现这种度量,其中由于缺乏代码可用性而无法对宿主程序进行检测。在实验中,提出的方法自动估计适当的任务粒度,既保持了图像滤波器(即主机任务)的帧率,又使矩阵乘法(即访客任务)的性能最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Method for Estimating Task Granularity for Automating GPU Cycle Sharing
In this paper, we propose a method for estimating task granularity to reduce guest's effort in graphics processing unit (GPU) cycle sharing systems. A cycle sharing system should maximize both the frame rate for resource donators (i.e., hosts) and the acceleration effect for scientific job submitters (i.e., guests). This can be realized by selecting the appropriate granularity for guest tasks. However, a previous cooperative multitasking method requires manual interactions to find the appropriate task granularity. To avoid such interactions, the proposed method automatically estimates the appropriate granularity by measuring the length of idle periods on the host. We show how this measurement can be realized on donated resources, where the host program cannot be instrumented due to the lack of code availability. In experiments, the proposed method automatically estimated the appropriate task granularity, which not only maintained the frame rate for an image filter (i.e., host task) but also maximized the performance of matrix multiplication (i.e., guest task).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信