{"title":"锁定感知争用的线程迁移","authors":"K. Pusukuri, Rajiv Gupta, L. Bhuyan","doi":"10.1145/2555243.2555273","DOIUrl":null,"url":null,"abstract":"On a cache-coherent multicore multiprocessor system, the performance of a multithreaded application with high lock contention is very sensitive to the distribution of application threads across multiple processors. This is because the distribution of threads impacts the frequency of lock transfers between processors, which in turn impacts the frequency of last-level cache (LLC) misses that lie on the critical path of execution. Inappropriate distribution of threads across processors increases LLC misses in the critical path and significantly degrades performance of multithreaded programs. To alleviate the above problem, this paper overviews a thread migration technique, which migrates threads of a multithreaded program across multicore processors so that threads seeking locks are more likely to find the locks on the same processor.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lock contention aware thread migrations\",\"authors\":\"K. Pusukuri, Rajiv Gupta, L. Bhuyan\",\"doi\":\"10.1145/2555243.2555273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On a cache-coherent multicore multiprocessor system, the performance of a multithreaded application with high lock contention is very sensitive to the distribution of application threads across multiple processors. This is because the distribution of threads impacts the frequency of lock transfers between processors, which in turn impacts the frequency of last-level cache (LLC) misses that lie on the critical path of execution. Inappropriate distribution of threads across processors increases LLC misses in the critical path and significantly degrades performance of multithreaded programs. To alleviate the above problem, this paper overviews a thread migration technique, which migrates threads of a multithreaded program across multicore processors so that threads seeking locks are more likely to find the locks on the same processor.\",\"PeriodicalId\":286119,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2555243.2555273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2555243.2555273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a cache-coherent multicore multiprocessor system, the performance of a multithreaded application with high lock contention is very sensitive to the distribution of application threads across multiple processors. This is because the distribution of threads impacts the frequency of lock transfers between processors, which in turn impacts the frequency of last-level cache (LLC) misses that lie on the critical path of execution. Inappropriate distribution of threads across processors increases LLC misses in the critical path and significantly degrades performance of multithreaded programs. To alleviate the above problem, this paper overviews a thread migration technique, which migrates threads of a multithreaded program across multicore processors so that threads seeking locks are more likely to find the locks on the same processor.