模糊粗糙集的对数熵测度及其在决策问题中的应用

Omdutt Sharma, Priti Gupta
{"title":"模糊粗糙集的对数熵测度及其在决策问题中的应用","authors":"Omdutt Sharma, Priti Gupta","doi":"10.4018/ijfsa.2020040104","DOIUrl":null,"url":null,"abstract":"Decision-making is a critical problem in various circumstances where some vagueness and ambiguity is found in information. To handle these types of problems, entropy is an important measure of information theory which is exploited to evaluate the uncertain degree of any data. There are two methodologies to determine the entropy, one is probabilistic in nature and other is non-probabilistic. It is shown that for every probabilistic measure there is a corresponding non-probabilistic measure. In this article, some logarithmic non-probabilistic entropy measures have been proposed for the fuzzy rough set corresponding to existing probabilistic entropy measures. The proposed measures are employed in a decision-making problem, which is related to the agriculture. Finally, these proposed measures are compared with the existing trigonometric entropy measures for fuzzy rough sets.","PeriodicalId":233724,"journal":{"name":"Int. J. Fuzzy Syst. Appl.","volume":"41 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Logarithmic Entropy Measures for Fuzzy Rough Set and their Application in Decision Making Problem\",\"authors\":\"Omdutt Sharma, Priti Gupta\",\"doi\":\"10.4018/ijfsa.2020040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision-making is a critical problem in various circumstances where some vagueness and ambiguity is found in information. To handle these types of problems, entropy is an important measure of information theory which is exploited to evaluate the uncertain degree of any data. There are two methodologies to determine the entropy, one is probabilistic in nature and other is non-probabilistic. It is shown that for every probabilistic measure there is a corresponding non-probabilistic measure. In this article, some logarithmic non-probabilistic entropy measures have been proposed for the fuzzy rough set corresponding to existing probabilistic entropy measures. The proposed measures are employed in a decision-making problem, which is related to the agriculture. Finally, these proposed measures are compared with the existing trigonometric entropy measures for fuzzy rough sets.\",\"PeriodicalId\":233724,\"journal\":{\"name\":\"Int. J. Fuzzy Syst. Appl.\",\"volume\":\"41 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Fuzzy Syst. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijfsa.2020040104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Syst. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.2020040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在信息存在模糊性和模糊性的情况下,决策是一个关键问题。为了处理这类问题,熵是信息论的一个重要度量,它被用来评价任何数据的不确定程度。确定熵的方法有两种,一种是概率的,另一种是非概率的。证明了每一个概率测度都有一个相应的非概率测度。本文针对已有的概率熵测度,对模糊粗糙集提出了几种对数非概率熵测度。将所提出的措施应用于一个与农业相关的决策问题。最后,将所提出的测度与现有的模糊粗糙集的三角熵测度进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logarithmic Entropy Measures for Fuzzy Rough Set and their Application in Decision Making Problem
Decision-making is a critical problem in various circumstances where some vagueness and ambiguity is found in information. To handle these types of problems, entropy is an important measure of information theory which is exploited to evaluate the uncertain degree of any data. There are two methodologies to determine the entropy, one is probabilistic in nature and other is non-probabilistic. It is shown that for every probabilistic measure there is a corresponding non-probabilistic measure. In this article, some logarithmic non-probabilistic entropy measures have been proposed for the fuzzy rough set corresponding to existing probabilistic entropy measures. The proposed measures are employed in a decision-making problem, which is related to the agriculture. Finally, these proposed measures are compared with the existing trigonometric entropy measures for fuzzy rough sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信