基于脑电信号的人机交互系统下肢意图检测的经典机器学习方法

Hasti Khiabani, M. Ahmadi
{"title":"基于脑电信号的人机交互系统下肢意图检测的经典机器学习方法","authors":"Hasti Khiabani, M. Ahmadi","doi":"10.1109/ICAS49788.2021.9551190","DOIUrl":null,"url":null,"abstract":"Surface Electromyography (sEMG)-based intention-detection systems of lower limb can intelligently augment human- robot interaction (HRI) systems to detect subject’s walking direction prior-to or during walking. Ten Subject-Exclusive (Subj-Ex) and Generalized (Gen) Classical Machine Learning (C-ML)-based models are employed to detect direction intentions and evaluate inter-subject robustness in one knee/foot- gesture and three walking-related scenarios. In each, sEMG signals are collected from eight muscles of nine subjects during at least nine distinct gestures/activities. Linear Discriminant Analysis (LDA) and Random Forest (RF) classifiers, applied to the Time-Domain (TD) feature set (of the four input sets), provided the best accuracy. Subj-Ex approach achieves the highest prediction accuracy, facing occasional competition from the Gen approach. In knee/foot gesture scenario, LDA reaches an accuracy of 91.67%, signifying its applicability to robotic-assisted walking, prosthetics, and orthotics. The overall prediction accuracy among walking- related scenarios, though not as remarkably high as in the knee/foot gesture recognition scenario, can reach up to 75%.","PeriodicalId":287105,"journal":{"name":"2021 IEEE International Conference on Autonomous Systems (ICAS)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Classical Machine Learning Approach For Emg-Based Lower Limb Intention Detection For Human-Robot Interaction Systems\",\"authors\":\"Hasti Khiabani, M. Ahmadi\",\"doi\":\"10.1109/ICAS49788.2021.9551190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface Electromyography (sEMG)-based intention-detection systems of lower limb can intelligently augment human- robot interaction (HRI) systems to detect subject’s walking direction prior-to or during walking. Ten Subject-Exclusive (Subj-Ex) and Generalized (Gen) Classical Machine Learning (C-ML)-based models are employed to detect direction intentions and evaluate inter-subject robustness in one knee/foot- gesture and three walking-related scenarios. In each, sEMG signals are collected from eight muscles of nine subjects during at least nine distinct gestures/activities. Linear Discriminant Analysis (LDA) and Random Forest (RF) classifiers, applied to the Time-Domain (TD) feature set (of the four input sets), provided the best accuracy. Subj-Ex approach achieves the highest prediction accuracy, facing occasional competition from the Gen approach. In knee/foot gesture scenario, LDA reaches an accuracy of 91.67%, signifying its applicability to robotic-assisted walking, prosthetics, and orthotics. The overall prediction accuracy among walking- related scenarios, though not as remarkably high as in the knee/foot gesture recognition scenario, can reach up to 75%.\",\"PeriodicalId\":287105,\"journal\":{\"name\":\"2021 IEEE International Conference on Autonomous Systems (ICAS)\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Autonomous Systems (ICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAS49788.2021.9551190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomous Systems (ICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS49788.2021.9551190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于表面肌电图(sEMG)的下肢意图检测系统可以智能地增强人-机器人交互(HRI)系统,以检测受试者在行走前或行走过程中的行走方向。采用10个基于主体排他(subject - ex)和广义(Gen)经典机器学习(C-ML)的模型来检测方向意图并评估一个膝关节/足部手势和三个步行相关场景的主体间鲁棒性。在每个实验中,从9个受试者的8块肌肉中收集至少9种不同的手势/活动的表面肌电信号。线性判别分析(LDA)和随机森林(RF)分类器应用于时域(TD)特征集(四个输入集),提供了最好的准确性。subject - ex方法达到了最高的预测精度,但偶尔会面临来自Gen方法的竞争。在膝关节/足部手势场景中,LDA的准确率达到91.67%,表明其适用于机器人辅助行走、假肢和矫形器。在与行走相关的场景中,总体预测准确率虽然没有膝盖/脚手势识别场景那么高,但可以达到75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Classical Machine Learning Approach For Emg-Based Lower Limb Intention Detection For Human-Robot Interaction Systems
Surface Electromyography (sEMG)-based intention-detection systems of lower limb can intelligently augment human- robot interaction (HRI) systems to detect subject’s walking direction prior-to or during walking. Ten Subject-Exclusive (Subj-Ex) and Generalized (Gen) Classical Machine Learning (C-ML)-based models are employed to detect direction intentions and evaluate inter-subject robustness in one knee/foot- gesture and three walking-related scenarios. In each, sEMG signals are collected from eight muscles of nine subjects during at least nine distinct gestures/activities. Linear Discriminant Analysis (LDA) and Random Forest (RF) classifiers, applied to the Time-Domain (TD) feature set (of the four input sets), provided the best accuracy. Subj-Ex approach achieves the highest prediction accuracy, facing occasional competition from the Gen approach. In knee/foot gesture scenario, LDA reaches an accuracy of 91.67%, signifying its applicability to robotic-assisted walking, prosthetics, and orthotics. The overall prediction accuracy among walking- related scenarios, though not as remarkably high as in the knee/foot gesture recognition scenario, can reach up to 75%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信