VIP:基于fpga的图像处理和神经网络处理器

Jocelyn Cloutier, Eric Cosatto, Steven Pigeon, R. Boyer, Patrice Y. Simard
{"title":"VIP:基于fpga的图像处理和神经网络处理器","authors":"Jocelyn Cloutier, Eric Cosatto, Steven Pigeon, R. Boyer, Patrice Y. Simard","doi":"10.1109/MNNFS.1996.493811","DOIUrl":null,"url":null,"abstract":"The present in this paper the architecture and implementation of the Virtual Image Processor (VIP) which is an SIMD multiprocessor build with large FPGAs. The SIMD architecture, together with a 2D torus connection topology, is well suited for image processing, pattern recognition and neural network algorithms. The VIP board can be programmed on-line at the logic level, allowing optimal hardware dedication to any given algorithm.","PeriodicalId":151891,"journal":{"name":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"VIP: an FPGA-based processor for image processing and neural networks\",\"authors\":\"Jocelyn Cloutier, Eric Cosatto, Steven Pigeon, R. Boyer, Patrice Y. Simard\",\"doi\":\"10.1109/MNNFS.1996.493811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present in this paper the architecture and implementation of the Virtual Image Processor (VIP) which is an SIMD multiprocessor build with large FPGAs. The SIMD architecture, together with a 2D torus connection topology, is well suited for image processing, pattern recognition and neural network algorithms. The VIP board can be programmed on-line at the logic level, allowing optimal hardware dedication to any given algorithm.\",\"PeriodicalId\":151891,\"journal\":{\"name\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNNFS.1996.493811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNNFS.1996.493811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

本文介绍了虚拟图像处理器(VIP)的体系结构和实现,VIP是由大型fpga组成的SIMD多处理器。SIMD架构加上二维环面连接拓扑,非常适合图像处理、模式识别和神经网络算法。VIP板可以在逻辑层面进行在线编程,允许对任何给定算法进行最佳硬件奉献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VIP: an FPGA-based processor for image processing and neural networks
The present in this paper the architecture and implementation of the Virtual Image Processor (VIP) which is an SIMD multiprocessor build with large FPGAs. The SIMD architecture, together with a 2D torus connection topology, is well suited for image processing, pattern recognition and neural network algorithms. The VIP board can be programmed on-line at the logic level, allowing optimal hardware dedication to any given algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信