{"title":"非一致凸积分的二阶条件:$L^1$的二次增长","authors":"D. Wachsmuth, G. Wachsmuth","doi":"10.46298/jnsao-2022-8733","DOIUrl":null,"url":null,"abstract":"We study no-gap second-order optimality conditions for a non-uniformly convex\nand non-smooth integral functional. The integral functional is extended to the\nspace of measures. The obtained second-order derivatives contain integrals on\nlower-dimensional manifolds. The proofs utilize the convex pre-conjugate, which\nis an integral functional on the space of continuous functions. Applications to\nnon-smooth optimal control problems are given.","PeriodicalId":250939,"journal":{"name":"Journal of Nonsmooth Analysis and Optimization","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Second-order conditions for non-uniformly convex integrands: quadratic\\n growth in $L^1$\",\"authors\":\"D. Wachsmuth, G. Wachsmuth\",\"doi\":\"10.46298/jnsao-2022-8733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study no-gap second-order optimality conditions for a non-uniformly convex\\nand non-smooth integral functional. The integral functional is extended to the\\nspace of measures. The obtained second-order derivatives contain integrals on\\nlower-dimensional manifolds. The proofs utilize the convex pre-conjugate, which\\nis an integral functional on the space of continuous functions. Applications to\\nnon-smooth optimal control problems are given.\",\"PeriodicalId\":250939,\"journal\":{\"name\":\"Journal of Nonsmooth Analysis and Optimization\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonsmooth Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jnsao-2022-8733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonsmooth Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jnsao-2022-8733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Second-order conditions for non-uniformly convex integrands: quadratic
growth in $L^1$
We study no-gap second-order optimality conditions for a non-uniformly convex
and non-smooth integral functional. The integral functional is extended to the
space of measures. The obtained second-order derivatives contain integrals on
lower-dimensional manifolds. The proofs utilize the convex pre-conjugate, which
is an integral functional on the space of continuous functions. Applications to
non-smooth optimal control problems are given.