非一致凸积分的二阶条件:$L^1$的二次增长

D. Wachsmuth, G. Wachsmuth
{"title":"非一致凸积分的二阶条件:$L^1$的二次增长","authors":"D. Wachsmuth, G. Wachsmuth","doi":"10.46298/jnsao-2022-8733","DOIUrl":null,"url":null,"abstract":"We study no-gap second-order optimality conditions for a non-uniformly convex\nand non-smooth integral functional. The integral functional is extended to the\nspace of measures. The obtained second-order derivatives contain integrals on\nlower-dimensional manifolds. The proofs utilize the convex pre-conjugate, which\nis an integral functional on the space of continuous functions. Applications to\nnon-smooth optimal control problems are given.","PeriodicalId":250939,"journal":{"name":"Journal of Nonsmooth Analysis and Optimization","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Second-order conditions for non-uniformly convex integrands: quadratic\\n growth in $L^1$\",\"authors\":\"D. Wachsmuth, G. Wachsmuth\",\"doi\":\"10.46298/jnsao-2022-8733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study no-gap second-order optimality conditions for a non-uniformly convex\\nand non-smooth integral functional. The integral functional is extended to the\\nspace of measures. The obtained second-order derivatives contain integrals on\\nlower-dimensional manifolds. The proofs utilize the convex pre-conjugate, which\\nis an integral functional on the space of continuous functions. Applications to\\nnon-smooth optimal control problems are given.\",\"PeriodicalId\":250939,\"journal\":{\"name\":\"Journal of Nonsmooth Analysis and Optimization\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonsmooth Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jnsao-2022-8733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonsmooth Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jnsao-2022-8733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了一类非均匀凸非光滑积分泛函的无间隙二阶最优性条件。将积分泛函推广到测度空间。得到的二阶导数包含了低维流形上的积分。证明利用了凸预共轭,它是连续函数空间上的一个积分泛函。给出了非光滑最优控制问题的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second-order conditions for non-uniformly convex integrands: quadratic growth in $L^1$
We study no-gap second-order optimality conditions for a non-uniformly convex and non-smooth integral functional. The integral functional is extended to the space of measures. The obtained second-order derivatives contain integrals on lower-dimensional manifolds. The proofs utilize the convex pre-conjugate, which is an integral functional on the space of continuous functions. Applications to non-smooth optimal control problems are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信