一种简单实用的多变量过程尺寸质量监控方法

Eduardo Marroquín, Georgina Solís
{"title":"一种简单实用的多变量过程尺寸质量监控方法","authors":"Eduardo Marroquín, Georgina Solís","doi":"10.1109/CERMA.2006.101","DOIUrl":null,"url":null,"abstract":"In this paper we propose a simple and practical method for monitoring a multivariate process. This method is used for monitoring the dimensional quality of a door panel in the automotive industry. In order to detect out-of-control signals, we use a T2 control chart. When the T2 statistic shows a point out of control, we recommend using a principal components contribution chart and a variables contribution chart. These two charts will show which variables and/or correlations are responsible for the signal. Besides, the principal components contribution chart and the interpretation of the principal components provide information about the dimensional structure of the panel, so that this structure confirms the out-of-control variables and correlations and used to take corrective actions in the process","PeriodicalId":179210,"journal":{"name":"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Simple and Practical Method for Monitoring Dimensional Quality in a Multivariate Process\",\"authors\":\"Eduardo Marroquín, Georgina Solís\",\"doi\":\"10.1109/CERMA.2006.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a simple and practical method for monitoring a multivariate process. This method is used for monitoring the dimensional quality of a door panel in the automotive industry. In order to detect out-of-control signals, we use a T2 control chart. When the T2 statistic shows a point out of control, we recommend using a principal components contribution chart and a variables contribution chart. These two charts will show which variables and/or correlations are responsible for the signal. Besides, the principal components contribution chart and the interpretation of the principal components provide information about the dimensional structure of the panel, so that this structure confirms the out-of-control variables and correlations and used to take corrective actions in the process\",\"PeriodicalId\":179210,\"journal\":{\"name\":\"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2006.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2006.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种简单实用的多变量过程监测方法。该方法用于汽车行业门板尺寸质量的监控。为了检测失控信号,我们使用T2控制图。当T2统计数据显示出一个失控点时,我们建议使用主成分贡献图和变量贡献图。这两个图表将显示哪些变量和/或相关性对信号负责。此外,主成分贡献图和主成分的解释提供了面板的维度结构信息,使该结构确认了失控变量和相关性,并用于在过程中采取纠正措施
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple and Practical Method for Monitoring Dimensional Quality in a Multivariate Process
In this paper we propose a simple and practical method for monitoring a multivariate process. This method is used for monitoring the dimensional quality of a door panel in the automotive industry. In order to detect out-of-control signals, we use a T2 control chart. When the T2 statistic shows a point out of control, we recommend using a principal components contribution chart and a variables contribution chart. These two charts will show which variables and/or correlations are responsible for the signal. Besides, the principal components contribution chart and the interpretation of the principal components provide information about the dimensional structure of the panel, so that this structure confirms the out-of-control variables and correlations and used to take corrective actions in the process
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信