呼吸音分析中MFCC特征提取的硬件实现

M. Bahoura, H. Ezzaidi
{"title":"呼吸音分析中MFCC特征提取的硬件实现","authors":"M. Bahoura, H. Ezzaidi","doi":"10.1109/WOSSPA.2013.6602366","DOIUrl":null,"url":null,"abstract":"In this paper, an acoustic feature extraction method based on mel frequency cepstral coefficients (MFCC) was implemented on FPGA for real-time respiratory sound analysis. The proposed technique was implemented using Xilinx System Generator (XSG) in MATLAB/SIMULINK environment. The feature vectors obtained with fixed-point XSG implementation is compared to those obtained with on the floating-point MATLAB one using normal and wheezing respiratory sounds.","PeriodicalId":417940,"journal":{"name":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Hardware implementation of MFCC feature extraction for respiratory sounds analysis\",\"authors\":\"M. Bahoura, H. Ezzaidi\",\"doi\":\"10.1109/WOSSPA.2013.6602366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an acoustic feature extraction method based on mel frequency cepstral coefficients (MFCC) was implemented on FPGA for real-time respiratory sound analysis. The proposed technique was implemented using Xilinx System Generator (XSG) in MATLAB/SIMULINK environment. The feature vectors obtained with fixed-point XSG implementation is compared to those obtained with on the floating-point MATLAB one using normal and wheezing respiratory sounds.\",\"PeriodicalId\":417940,\"journal\":{\"name\":\"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOSSPA.2013.6602366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2013.6602366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文在FPGA上实现了一种基于频谱倒谱系数(MFCC)的实时呼吸声特征提取方法。该技术在MATLAB/SIMULINK环境下使用Xilinx System Generator (XSG)实现。将定点XSG实现得到的特征向量与使用正常呼吸音和喘息呼吸音的浮点MATLAB实现得到的特征向量进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware implementation of MFCC feature extraction for respiratory sounds analysis
In this paper, an acoustic feature extraction method based on mel frequency cepstral coefficients (MFCC) was implemented on FPGA for real-time respiratory sound analysis. The proposed technique was implemented using Xilinx System Generator (XSG) in MATLAB/SIMULINK environment. The feature vectors obtained with fixed-point XSG implementation is compared to those obtained with on the floating-point MATLAB one using normal and wheezing respiratory sounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信