C. Song, S. Azimuudin, Byungje Lee, F. Harackiewicz, M. Yen, D. Ralu, A. Hoffman, Pingshan Wang
{"title":"片上液体薄膜的微波介电特性","authors":"C. Song, S. Azimuudin, Byungje Lee, F. Harackiewicz, M. Yen, D. Ralu, A. Hoffman, Pingshan Wang","doi":"10.1109/LSSA.2006.250401","DOIUrl":null,"url":null,"abstract":"A microwave characterization method for on-chip liquid film dielectric property measurement is developed. Microstrip-line based on-chip test structures are fabricated to characterize the microwave dielectric properties of various on-chip liquid films: DI water and binary mixtures of DI water with glucose and ethanol. The obtained microwave dielectric properties are presented in Cole-Cole diagrams, which show general frequency dependence similar to that of bulk liquids. Different concentration levels of glucose and ethanol show different microwave dielectric responses. Therefore, on-chip microwave dielectric spectroscopy provides a promising and inexpensive on-chip sensing mechanism for biomedical and chemical applications","PeriodicalId":360097,"journal":{"name":"2006 IEEE/NLM Life Science Systems and Applications Workshop","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microwave Dielectric Properties of On-Chip Liquid Films\",\"authors\":\"C. Song, S. Azimuudin, Byungje Lee, F. Harackiewicz, M. Yen, D. Ralu, A. Hoffman, Pingshan Wang\",\"doi\":\"10.1109/LSSA.2006.250401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A microwave characterization method for on-chip liquid film dielectric property measurement is developed. Microstrip-line based on-chip test structures are fabricated to characterize the microwave dielectric properties of various on-chip liquid films: DI water and binary mixtures of DI water with glucose and ethanol. The obtained microwave dielectric properties are presented in Cole-Cole diagrams, which show general frequency dependence similar to that of bulk liquids. Different concentration levels of glucose and ethanol show different microwave dielectric responses. Therefore, on-chip microwave dielectric spectroscopy provides a promising and inexpensive on-chip sensing mechanism for biomedical and chemical applications\",\"PeriodicalId\":360097,\"journal\":{\"name\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSSA.2006.250401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/NLM Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSSA.2006.250401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microwave Dielectric Properties of On-Chip Liquid Films
A microwave characterization method for on-chip liquid film dielectric property measurement is developed. Microstrip-line based on-chip test structures are fabricated to characterize the microwave dielectric properties of various on-chip liquid films: DI water and binary mixtures of DI water with glucose and ethanol. The obtained microwave dielectric properties are presented in Cole-Cole diagrams, which show general frequency dependence similar to that of bulk liquids. Different concentration levels of glucose and ethanol show different microwave dielectric responses. Therefore, on-chip microwave dielectric spectroscopy provides a promising and inexpensive on-chip sensing mechanism for biomedical and chemical applications