用于火星推进剂液化和储存的高性能制冷机的设计

Lei Zhou, J. Kapat, L. Chow, S. Lei
{"title":"用于火星推进剂液化和储存的高性能制冷机的设计","authors":"Lei Zhou, J. Kapat, L. Chow, S. Lei","doi":"10.1115/imece2000-1444","DOIUrl":null,"url":null,"abstract":"\n Human exploration of space is extending beyond low earth orbit and Moon as NASA is planning a human mission to Mars in 2014. Past studies indicate that In Situ Propellant Production (ISPP) on Mars is a key enabling technology in Mission to Mars. In ISPP, oxygen and methane, which are to be used as cryogenic propellants for any return vehicle from Mars to Earth, are produced on the Martian surface. Once the propellants are produced in gaseous state, they must be liquefied for storage and use in the ascent vehicle. Cryogenic cooling is needed for both liquefaction and storage since the storage temperature, around 90K for oxygen and 112K for methane, are considerably lower than the average temperature on the Martian surface, which is around 220K.\n This paper presents the preliminary design of a single-stage, lightweight and compact, cryocooler based on reverse Brayton cycle with performance comparable to, but more reliable than, a corresponding Stirling cycle. With the application of micro-scale highly-effective recuperative heat exchanger, the estimated COP of the miniature cryocooler can reach 0.2. Thermal cycle parameters that can influence the cycle performance are studied. The two key enabling components, an integrated and micro-fabricated compressor and motor and a micro-fabricated recuperative heat exchanger, are discussed and shown to be possible with modern technology.","PeriodicalId":201774,"journal":{"name":"Heat Transfer: Volume 2","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a High Performance Cryocooler for Propellant Liquefaction and Storage on Mars\",\"authors\":\"Lei Zhou, J. Kapat, L. Chow, S. Lei\",\"doi\":\"10.1115/imece2000-1444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Human exploration of space is extending beyond low earth orbit and Moon as NASA is planning a human mission to Mars in 2014. Past studies indicate that In Situ Propellant Production (ISPP) on Mars is a key enabling technology in Mission to Mars. In ISPP, oxygen and methane, which are to be used as cryogenic propellants for any return vehicle from Mars to Earth, are produced on the Martian surface. Once the propellants are produced in gaseous state, they must be liquefied for storage and use in the ascent vehicle. Cryogenic cooling is needed for both liquefaction and storage since the storage temperature, around 90K for oxygen and 112K for methane, are considerably lower than the average temperature on the Martian surface, which is around 220K.\\n This paper presents the preliminary design of a single-stage, lightweight and compact, cryocooler based on reverse Brayton cycle with performance comparable to, but more reliable than, a corresponding Stirling cycle. With the application of micro-scale highly-effective recuperative heat exchanger, the estimated COP of the miniature cryocooler can reach 0.2. Thermal cycle parameters that can influence the cycle performance are studied. The two key enabling components, an integrated and micro-fabricated compressor and motor and a micro-fabricated recuperative heat exchanger, are discussed and shown to be possible with modern technology.\",\"PeriodicalId\":201774,\"journal\":{\"name\":\"Heat Transfer: Volume 2\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着美国宇航局计划在2014年进行人类火星任务,人类对太空的探索已经超越了近地轨道和月球。以往的研究表明,在火星上就地生产推进剂(ISPP)是实现火星任务的关键技术。在ISPP中,氧气和甲烷是在火星表面产生的,它们将被用作任何从火星返回地球的飞行器的低温推进剂。一旦推进剂在气体状态下产生,它们必须被液化以储存和在上升飞行器中使用。液化和储存都需要低温冷却,因为氧气的储存温度约为90K,甲烷的储存温度为112K,远远低于火星表面的平均温度220K左右。本文介绍了一种基于反布雷顿循环的单级、轻量、紧凑的制冷机的初步设计,其性能与相应的斯特林循环相当,但比斯特林循环更可靠。采用微型高效回热式换热器后,微型制冷机的COP可达到0.2。研究了影响循环性能的热循环参数。两个关键的使能组件,集成和微型制造的压缩机和电机和微型制造的回热式热交换器,进行了讨论,并证明了可能与现代技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a High Performance Cryocooler for Propellant Liquefaction and Storage on Mars
Human exploration of space is extending beyond low earth orbit and Moon as NASA is planning a human mission to Mars in 2014. Past studies indicate that In Situ Propellant Production (ISPP) on Mars is a key enabling technology in Mission to Mars. In ISPP, oxygen and methane, which are to be used as cryogenic propellants for any return vehicle from Mars to Earth, are produced on the Martian surface. Once the propellants are produced in gaseous state, they must be liquefied for storage and use in the ascent vehicle. Cryogenic cooling is needed for both liquefaction and storage since the storage temperature, around 90K for oxygen and 112K for methane, are considerably lower than the average temperature on the Martian surface, which is around 220K. This paper presents the preliminary design of a single-stage, lightweight and compact, cryocooler based on reverse Brayton cycle with performance comparable to, but more reliable than, a corresponding Stirling cycle. With the application of micro-scale highly-effective recuperative heat exchanger, the estimated COP of the miniature cryocooler can reach 0.2. Thermal cycle parameters that can influence the cycle performance are studied. The two key enabling components, an integrated and micro-fabricated compressor and motor and a micro-fabricated recuperative heat exchanger, are discussed and shown to be possible with modern technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信