协素数阵列中自相关采样的均方误差

Dimitris G. Chachlakis, Panos P. Markopoulos, F. Ahmad
{"title":"协素数阵列中自相关采样的均方误差","authors":"Dimitris G. Chachlakis, Panos P. Markopoulos, F. Ahmad","doi":"10.1109/CAMSAP.2017.8313121","DOIUrl":null,"url":null,"abstract":"Standard direction-of-arrival estimation using coprime arrays samples the entries of the estimated physical-array autocorrelation matrix, organizes them in a matrix structure, and conducts multiple-signal classification (MUSIC) with singular vectors of the resulting matrix. A majority of the existing literature samples the physical-array autocorrelations by selection, retaining only one of the samples that correspond to each element of the difference coarray. Other more recent works conduct averaging of all samples that relate to each coarray element. Even though the two methods coincide when applied on the nominal/true physical-array autocorrelations, their performance differs significantly when applied on finite-snapshot estimates. In this paper, we present for the first time in closed form the mean-squared-error of both selection and averaging autocorrelation sampling and clarify/establish the superiority of the latter.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"501 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Mean-Squared-Error of autocorrelation sampling in coprime arrays\",\"authors\":\"Dimitris G. Chachlakis, Panos P. Markopoulos, F. Ahmad\",\"doi\":\"10.1109/CAMSAP.2017.8313121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standard direction-of-arrival estimation using coprime arrays samples the entries of the estimated physical-array autocorrelation matrix, organizes them in a matrix structure, and conducts multiple-signal classification (MUSIC) with singular vectors of the resulting matrix. A majority of the existing literature samples the physical-array autocorrelations by selection, retaining only one of the samples that correspond to each element of the difference coarray. Other more recent works conduct averaging of all samples that relate to each coarray element. Even though the two methods coincide when applied on the nominal/true physical-array autocorrelations, their performance differs significantly when applied on finite-snapshot estimates. In this paper, we present for the first time in closed form the mean-squared-error of both selection and averaging autocorrelation sampling and clarify/establish the superiority of the latter.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"501 1-2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

使用协素数阵列的标准到达方向估计对估计的物理阵列自相关矩阵的条目进行采样,将它们组织成矩阵结构,并使用所得矩阵的奇异向量进行多信号分类(MUSIC)。大多数现有文献通过选择对物理阵列自相关进行采样,仅保留对应于差异共阵的每个元素的一个样本。其他最近的工作是对与每个共阵元素相关的所有样本进行平均。尽管这两种方法在应用于名义/真实物理阵列自相关性时是一致的,但在应用于有限快照估计时,它们的性能差异很大。在本文中,我们首次以封闭形式给出了选择和平均自相关抽样的均方误差,并阐明了后者的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Mean-Squared-Error of autocorrelation sampling in coprime arrays
Standard direction-of-arrival estimation using coprime arrays samples the entries of the estimated physical-array autocorrelation matrix, organizes them in a matrix structure, and conducts multiple-signal classification (MUSIC) with singular vectors of the resulting matrix. A majority of the existing literature samples the physical-array autocorrelations by selection, retaining only one of the samples that correspond to each element of the difference coarray. Other more recent works conduct averaging of all samples that relate to each coarray element. Even though the two methods coincide when applied on the nominal/true physical-array autocorrelations, their performance differs significantly when applied on finite-snapshot estimates. In this paper, we present for the first time in closed form the mean-squared-error of both selection and averaging autocorrelation sampling and clarify/establish the superiority of the latter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信