Daniel M. Muñoz Arboleda, C. Franciscangelis, W. Margulis, F. Fruett, I. Söderquist
{"title":"分布式光纤传感器的低延迟干扰检测","authors":"Daniel M. Muñoz Arboleda, C. Franciscangelis, W. Margulis, F. Fruett, I. Söderquist","doi":"10.1109/ICNSC.2017.8000121","DOIUrl":null,"url":null,"abstract":"Distributed optical fiber sensors based on phase-sensitive optical time domain reflectometry (Φ-OTDR) are feasible options to detect perturbations in kilometric security perimeters or mechanical structures. This technique takes advantage of electromagnetic interference immunity, small dimensions, lightweight, flexibility, and capability. Moreover, this technique can be combined with dedicated hardware architectures, in order to improve its performance and reliability. This work proposes the use of parallel hardware architectures to implement real-time detecting and locating perturbations in a Φ-OTDR distributed optical fiber vibration sensor. Hardware architectures of the iterative moving average filter and the Sobel filter were mapped on field programmable gate arrays, exploring the intrinsic parallelism in order to achieve real-time requirements. A performance comparison between the proposed solutions was addressed in terms of hardware cost, latency and power consumption.","PeriodicalId":145129,"journal":{"name":"2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low latency disturbance detection using distributed optical fiber sensors\",\"authors\":\"Daniel M. Muñoz Arboleda, C. Franciscangelis, W. Margulis, F. Fruett, I. Söderquist\",\"doi\":\"10.1109/ICNSC.2017.8000121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed optical fiber sensors based on phase-sensitive optical time domain reflectometry (Φ-OTDR) are feasible options to detect perturbations in kilometric security perimeters or mechanical structures. This technique takes advantage of electromagnetic interference immunity, small dimensions, lightweight, flexibility, and capability. Moreover, this technique can be combined with dedicated hardware architectures, in order to improve its performance and reliability. This work proposes the use of parallel hardware architectures to implement real-time detecting and locating perturbations in a Φ-OTDR distributed optical fiber vibration sensor. Hardware architectures of the iterative moving average filter and the Sobel filter were mapped on field programmable gate arrays, exploring the intrinsic parallelism in order to achieve real-time requirements. A performance comparison between the proposed solutions was addressed in terms of hardware cost, latency and power consumption.\",\"PeriodicalId\":145129,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC.2017.8000121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC.2017.8000121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low latency disturbance detection using distributed optical fiber sensors
Distributed optical fiber sensors based on phase-sensitive optical time domain reflectometry (Φ-OTDR) are feasible options to detect perturbations in kilometric security perimeters or mechanical structures. This technique takes advantage of electromagnetic interference immunity, small dimensions, lightweight, flexibility, and capability. Moreover, this technique can be combined with dedicated hardware architectures, in order to improve its performance and reliability. This work proposes the use of parallel hardware architectures to implement real-time detecting and locating perturbations in a Φ-OTDR distributed optical fiber vibration sensor. Hardware architectures of the iterative moving average filter and the Sobel filter were mapped on field programmable gate arrays, exploring the intrinsic parallelism in order to achieve real-time requirements. A performance comparison between the proposed solutions was addressed in terms of hardware cost, latency and power consumption.