结合深度学习和手工特征进行皮肤病变分类

Tomás Majtner, Sule YAYILGAN YILDIRIM, J. Hardeberg
{"title":"结合深度学习和手工特征进行皮肤病变分类","authors":"Tomás Majtner, Sule YAYILGAN YILDIRIM, J. Hardeberg","doi":"10.1109/IPTA.2016.7821017","DOIUrl":null,"url":null,"abstract":"Melanoma is one of the most lethal forms of skin cancer. It occurs on the skin surface and develops from cells known as melanocytes. The same cells are also responsible for benign lesions commonly known as moles, which are visually similar to melanoma in its early stage. If melanoma is treated correctly, it is very often curable. Currently, much research is concentrated on the automated recognition of melanomas. In this paper, we propose an automated melanoma recognition system, which is based on deep learning method combined with so called hand-crafted RSurf features and Local Binary Patterns. The experimental evaluation on a large publicly available dataset demonstrates high classification accuracy, sensitivity, and specificity of our proposed approach when it is compared with other classifiers on the same dataset.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":"{\"title\":\"Combining deep learning and hand-crafted features for skin lesion classification\",\"authors\":\"Tomás Majtner, Sule YAYILGAN YILDIRIM, J. Hardeberg\",\"doi\":\"10.1109/IPTA.2016.7821017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Melanoma is one of the most lethal forms of skin cancer. It occurs on the skin surface and develops from cells known as melanocytes. The same cells are also responsible for benign lesions commonly known as moles, which are visually similar to melanoma in its early stage. If melanoma is treated correctly, it is very often curable. Currently, much research is concentrated on the automated recognition of melanomas. In this paper, we propose an automated melanoma recognition system, which is based on deep learning method combined with so called hand-crafted RSurf features and Local Binary Patterns. The experimental evaluation on a large publicly available dataset demonstrates high classification accuracy, sensitivity, and specificity of our proposed approach when it is compared with other classifiers on the same dataset.\",\"PeriodicalId\":123429,\"journal\":{\"name\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2016.7821017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7821017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

摘要

黑色素瘤是最致命的皮肤癌之一。它发生在皮肤表面,由称为黑素细胞的细胞发育而来。同样的细胞也负责良性病变,通常被称为痣,它在早期的视觉上与黑色素瘤相似。如果治疗得当,黑色素瘤通常是可以治愈的。目前,很多研究都集中在黑素瘤的自动识别上。在本文中,我们提出了一种基于深度学习的黑色素瘤自动识别系统,该系统结合了所谓的手工RSurf特征和局部二进制模式。在一个大型公开可用数据集上的实验评估表明,与同一数据集上的其他分类器相比,我们提出的方法具有较高的分类精度、灵敏度和特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining deep learning and hand-crafted features for skin lesion classification
Melanoma is one of the most lethal forms of skin cancer. It occurs on the skin surface and develops from cells known as melanocytes. The same cells are also responsible for benign lesions commonly known as moles, which are visually similar to melanoma in its early stage. If melanoma is treated correctly, it is very often curable. Currently, much research is concentrated on the automated recognition of melanomas. In this paper, we propose an automated melanoma recognition system, which is based on deep learning method combined with so called hand-crafted RSurf features and Local Binary Patterns. The experimental evaluation on a large publicly available dataset demonstrates high classification accuracy, sensitivity, and specificity of our proposed approach when it is compared with other classifiers on the same dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信